Abstract:The advent of ultra-massive multiple-input-multiple output systems holds great promise for next-generation communications, yet their channels exhibit hybrid far- and near- field beam-squint (HFBS) effect. In this paper, we not only overcome but also harness the HFBS effect to propose an integrated location sensing and communication (ILSC) framework. During the uplink training stage, user terminals (UTs) transmit reference signals for simultaneous channel estimation and location sensing. This stage leverages an elaborately designed hybrid-field projection matrix to overcome the HFBS effect and estimate the channel in compressive manner. Subsequently, the scatterers' locations can be sensed from the spherical wavefront based on the channel estimation results. By treating the sensed scatterers as virtual anchors, we employ a weighted least-squares approach to derive UT' s location. Moreover, we propose an iterative refinement mechanism, which utilizes the accurately estimated time difference of arrival of multipath components to enhance location sensing precision. In the following downlink data transmission stage, we leverage the acquired location information to further optimize the hybrid beamformer, which combines the beam broadening and focusing to mitigate the spectral efficiency degradation resulted from the HFBS effect. Extensive simulation experiments demonstrate that the proposed ILSC scheme has superior location sensing and communication performance than conventional methods.
Abstract:The codebook-based analog beamforming is appealing for future terahertz (THz) communications since it can generate high-gain directional beams with low-cost phase shifters via low-complexity beam training. However, conventional beamforming codebook design based on array response vectors for narrowband communications may suffer from severe performance loss in wideband systems due to the ``beam squint" effect over frequency. To tackle this issue, we propose in this paper a new codebook design method for analog beamforming in wideband THz systems. In particular, to characterize the analog beamforming performance in wideband systems, we propose a new metric termed wideband beam gain, which is given by the minimum beamforming gain over the entire frequency band given a target angle. Based on this metric, a wideband analog beamforming codebook design problem is formulated for optimally balancing the beamforming gains in both the spatial and frequency domains, and the performance loss of conventional narrowband beamforming in wideband systems is analyzed. To solve the new wideband beamforming codebook design problem, we divide the spatial domain into orthogonal angular zones each associated with one beam, thereby decoupling the codebook design into a zone division sub-problem and a set of beamforming optimization sub-problems each for one zone. For the zone division sub-problem, we propose a bisection method to obtain the optimal boundaries for separating adjacent zones. While for each of the per-zone-based beamforming optimization sub-problems, we further propose an efficient augmented Lagrange method (ALM) to solve it. Numerical results demonstrate the performance superiority of our proposed codebook design for wideband analog beamforming to the narrowband beamforming codebook and also validate our performance analysis.
Abstract:Movable antenna (MA) is an emerging technology that can significantly improve communication performance via the continuous adjustment of the antenna positions. To unleash the potential of MAs in wideband communication systems, acquiring accurate channel state information (CSI), i.e., the channel frequency responses (CFRs) between any position pair within the transmit (Tx) region and the receive (Rx) region across all subcarriers, is a crucial issue. In this paper, we study the channel estimation problem for wideband MA systems. To start with, we express the CFRs as a combination of the field-response vectors (FRVs), delay-response vector (DRV), and path-response tensor (PRT), which exhibit sparse characteristics and can be recovered by using a limited number of channel measurements at selected position pairs of Tx and Rx MAs over a few subcarriers. Specifically, we first formulate the recovery of the FRVs and DRV as a problem with multiple measurement vectors in compressed sensing (MMV-CS), which can be solved via a simultaneous orthogonal matching pursuit (SOMP) algorithm. Next, we estimate the PRT using the least-square (LS) method. Moreover, we also devise an alternating refinement approach to further improve the accuracy of the estimated FRVs, DRV, and PRT. This is achieved by minimizing the discrepancy between the received pilots and those constructed by the estimated CSI, which can be efficiently carried out by using the gradient descent algorithm. Finally, simulation results demonstrate that both the SOMP-based channel estimation method and alternating refinement method can reconstruct the complete wideband CSI with high accuracy, where the alternating refinement method performs better despite a higher complexity.
Abstract:Movable antenna (MA) has emerged as a promising technology for improving the performance of wireless communication systems, which enables local movement of the antennas to create more favorable channel conditions. In this letter, we advance its application for over-the-air computation (AirComp) network, where an access point is equipped with a two-dimensional (2D) MA array to aggregate wireless data from massive users. We aim to minimize the computation mean square error (CMSE) by jointly optimizing the antenna position vector (APV), the receive combining vector at the access point and the transmit coefficients from all users. To tackle this highly non-convex problem, we propose a two-loop iterative algorithm, where the particle swarm optimization (PSO) approach is leveraged to obtain a suboptimal APV in the outer loop while the receive combining vector and transmit coefficients are alternately optimized in the inner loop. Numerical results demonstrate that the proposed MA-enhanced AirComp network outperforms the conventional network with fixed-position antennas (FPAs).
Abstract:Intelligent reflecting surface (IRS) and movable antenna (MA)/fluid antenna (FA) techniques have both received increasing attention in the realm of wireless communications due to their ability to reconfigure and improve wireless channel conditions. In this paper, we investigate the integration of MAs/FAs into an IRS-assisted wireless communication system. In particular, we consider the downlink transmission from a multi-MA base station (BS) to a single-antenna user with the aid of an IRS, aiming to maximize the user's received signal-to-noise ratio (SNR), by jointly optimizing the BS/IRS active/passive beamforming and the MAs' positions. Due to the similar capability of MAs and IRS for channel reconfiguration, we first conduct theoretical analyses of the performance gain of MAs over conventional fixed-position antennas (FPAs) under the line-of-sight (LoS) BS-IRS channel and derive the conditions under which the performance gain becomes more or less significant. Next, to solve the received SNR maximization problem, we propose an alternating optimization (AO) algorithm that decomposes it into two subproblems and solve them alternately. Numerical results are provided to validate our analytical results and evaluate the performance gains of MAs over FPAs under different setups.
Abstract:The movable antenna (MA) technology has attracted increasing attention in wireless communications due to its capability for flexibly adjusting the positions of multiple antennas in a local region to reconfigure channel conditions. In this paper, we investigate its application in an amplify-and-forward (AF) relay system, where a multi-MA AF relay is deployed to assist in the wireless communications from a source to a destination. In particular, we aim to maximize the achievable rate at the destination, by jointly optimizing the AF weight matrix at the relay and its MAs' positions in two stages for receiving the signal from the source and transmitting its amplified version to the destination, respectively. However, compared to the existing one-stage antenna position optimization, the two-stage position optimization is more challenging due to its intricate coupling in the achievable rate at the destination. To tackle this challenge, we decompose the considered problem into several subproblems by invoking the alternating optimization (AO) and solve them by using the semidefinite programming and the gradient ascent. Numerical results demonstrate the superiority of our proposed system over the conventional relaying system with fixed-position antennas (FPAs) and also drive essential insights.
Abstract:Movable antenna (MA) is a new technology which leverages local movement of antennas to improve channel qualities and enhance the communication performance. Nevertheless, to fully realize the potential of MA systems, complete channel state information (CSI) between the transmitter-MA and the receiver-MA is required, which involves estimating a large number of channel parameters and incurs an excessive amount of training overhead. To address this challenge, in this paper, we propose a CSI-free MA position optimization method. The basic idea is to treat position optimization as a black-box optimization problem and calculate the gradient of the unknown objective function using zeroth-order (ZO) gradient approximation techniques. Simulation results show that the proposed ZO-based method, through adaptively adjusting the position of the MA, can achieve a favorable signal-to-noise-ratio (SNR) using a smaller number of position measurements than the CSI-based approach. Such a merit makes the proposed algorithm more adaptable to fast-changing propagation channels.
Abstract:Fluid antennas (FAs) and movable antennas (MAs) have attracted increasing attention in wireless communications recently. As compared to the conventional fixed-position antennas (FPAs), their geometry can be dynamically reconfigured, such that more flexible beamforming can be achieved for signal coverage and/or interference nulling. In this paper, we investigate the use of MAs to achieve uniform coverage for multiple regions with arbitrary number and width in the spatial domain. In particular, we aim to jointly optimize the MAs weights and positions within a linear array to maximize the minimum beam gain over the desired spatial regions. However, the resulting problem is non-convex and difficult to be optimally solved. To tackle this difficulty, we propose an alternating optimization (AO) algorithm to obtain a high-quality suboptimal solution, where the MAs weights and positions are alternately optimized by applying successive convex approximation (SCA) technique. Numerical results show that our proposed MAbased beam coverage scheme can achieve much better performance than conventional FPAs.
Abstract:Fluid antennas (FAs) and mobile antennas (MAs) are innovative technologies in wireless communications that are able to proactively improve channel conditions by dynamically adjusting the transmit/receive antenna positions within a given spatial region. In this paper, we investigate an MA-enhanced multiple-input single-output (MISO) secure communication system, aiming to maximize the secrecy rate by jointly optimizing the positions of multiple MAs. Instead of continuously searching for the optimal MA positions as in prior works, we propose to discretize the transmit region into multiple sampling points, thereby converting the continuous antenna position optimization into a discrete sampling point selection problem. However, this point selection problem is combinatory and thus difficult to be optimally solved. To tackle this challenge, we ingeniously transform this combinatory problem into a recursive path selection problem in graph theory and propose a partial enumeration algorithm to obtain its optimal solution without the need for high-complexity exhaustive search. To further reduce the complexity, a linear-time sequential update algorithm is also proposed to obtain a high-quality suboptimal solution. Numerical results show that our proposed algorithms yield much higher secrecy rates as compared to the conventional FPA and other baseline schemes.
Abstract:Movable antennas (MAs), traditionally explored in antenna design, have recently garnered significant attention in wireless communications due to their ability to dynamically adjust the antenna positions to changes in the propagation environment. However, previous research has primarily focused on characterizing the performance limits of various MA-assisted wireless communication systems, with less emphasis on their practical implementation. To address this gap, in this article, we propose several general MA architectures that extend existing designs by varying several key aspects to cater to different application scenarios and tradeoffs between cost and performance. Additionally, we draw from fields such as antenna design and mechanical control to provide an overview of candidate implementation methods for the proposed MA architectures, utilizing either direct mechanical or equivalent electronic control. Simulation results are finally presented to support our discussion.