Abstract:Typical reconfigurable intelligent surface (RIS) implementations include metasurfaces with almost passive unit elements capable of reflecting their incident waves in controllable ways, enhancing wireless communications in a cost-effective manner. In this paper, we advance the concept of intelligent metasurfaces by introducing a flexible array geometry, termed flexible intelligent metasurface (FIM), which supports both element movement (EM) and passive beamforming (PBF). In particular, based on the single-input single-output (SISO) system setup, we first compare three modes of FIM, namely, EM-only, PBF-only, and EM-PBF, in terms of received signal power under different FIM and channel setups. The PBF-only mode, which only adjusts the reflect phase, is shown to be less effective than the EM-only mode in enhancing received signal strength. In a multi-element, multi-path scenario, the EM-only mode improves the received signal power by 125% compared to the PBF-only mode. The EM-PBF mode, which optimizes both element positions and phases, further enhances performance. Additionally, we investigate the channel estimation problem for FIM systems by designing a protocol that gathers EM and PBF measurements, enabling the formulation of a compressive sensing problem for joint cascaded and direct channel estimation. We then propose a sparse recovery algorithm called clustering mean-field variational sparse Bayesian learning, which enhances estimation performance while maintaining low complexity.
Abstract:Flexible-geometry arrays have garnered much attention in wireless communications, which dynamically adjust wireless channels to improve the system performance. In this paper, we propose a novel flexible-geometry array for a $360^\circ$ coverage, named flxible cylindrical array (FCLA), comprised of multiple flexible circular arrays (FCAs). The elements in each FCA can revolve around the circle track to change their horizontal positions, and the FCAs can move along the vertical axis to change the elements' heights. Considering that horizontal revolving can change the antenna orientation, we adopt both the omni-directional and the directional antenna patterns. Based on the regularized zero-forcing (RZF) precoding scheme, we formulate a particular compressive sensing (CS) problem incorporating joint precoding and antenna position optimization, and propose two effective methods, namely FCLA-J and FCLA-A, to solve it. Specifically, the first method involves jointly optimizing the element's revolving angle, height, and precoding coefficient within a single CS framework. The second method decouples the CS problem into two subproblems by utilizing an alternative sparse optimization approach for the revolving angle and height, thereby reducing time complexity. Simulation results reveal that, when utilizing directional radiation patterns, FCLA-J and FCLA-A achieve substantial performance improvements of 43.32\% and 25.42\%, respectively, compared to uniform cylindrical arrays (UCLAs) with RZF precoding.
Abstract:Analog beamforming holds great potential for future terahertz (THz) communications due to its ability to generate high-gain directional beams with low-cost phase shifters.However, conventional analog beamforming may suffer substantial performance degradation in wideband systems due to the beam-squint effects. Instead of relying on high-cost true time delayers, we propose in this paper an efficient three-dimensional (3D) rotatable antenna technology to mitigate the beam-squint effects, motivated by the fact that beam squint disappears along the boresight direction. In particular, we focus on a wideband wide-beam coverage problem in this paper, aiming to maximize the minimum beamforming gain within a given angle and frequency range by jointly optimizing the analog beamforming vector and the 3D rotation angles of the antenna array. However, this problem is non-convex and difficult to be optimally solved due to the coupling of the spatial and frequency domains and that of the antenna weights and rotation. To tackle this issue, we first reformulate the problem into an equivalent form by merging the spatial and frequency domains into a single composite domain. Next, we combine alternating optimization (AO) and successive convex approximation (SCA) algorithms to optimize the analog beamforming and rotation angles within this composite domain. Simulation results demonstrate that the proposed scheme can significantly outperform conventional schemes without antenna rotation, thus offering a cost-effective solution for wideband transmission over THz bands.
Abstract:We investigate joint bistatic positioning (BP) and monostatic sensing (MS) within a multi-input multi-output orthogonal frequency-division system. Based on the derived Cram\'er-Rao Bounds (CRBs), we propose novel beamforming optimization strategies that enable flexible performance trade-offs between BP and MS. Two distinct objectives are considered in this multi-objective optimization problem, namely, enabling user equipment to estimate its own position while accounting for unknown clock bias and orientation, and allowing the base station to locate passive targets. We first analyze digital schemes, proposing both weighted-sum CRB and weighted-sum mismatch (of beamformers and covariance matrices) minimization approaches. These are examined under full-dimension beamforming (FDB) and low-complexity codebook-based power allocation (CPA). To adapt to low-cost hardwares, we develop unit-amplitude analog FDB and CPA schemes based on the weighted-sum mismatch of the covariance matrices paradigm, solved using distinct methods. Numerical results confirm the effectiveness of our designs, highlighting the superiority of minimizing the weighted-sum mismatch of covariance matrices, and the advantages of mutual information fusion between BP and MS.
Abstract:Movable antenna (MA) has been recognized as a promising technology to enhance the performance of wireless communication and sensing by enabling antenna movement. Such a significant paradigm shift from conventional fixed antennas (FAs) to MAs offers tremendous new opportunities towards realizing more versatile, adaptive and efficient next-generation wireless networks such as 6G. In this paper, we provide a comprehensive tutorial on the fundamentals and advancements in the area of MA-empowered wireless networks. First, we overview the historical development and contemporary applications of MA technologies. Next, to characterize the continuous variation in wireless channels with respect to antenna position and/or orientation, we present new field-response channel models tailored for MAs, which are applicable to narrowband and wideband systems as well as far-field and near-field propagation conditions. Subsequently, we review the state-of-the-art architectures for implementing MAs and discuss their practical constraints. A general optimization framework is then formulated to fully exploit the spatial degrees of freedom (DoFs) in antenna movement for performance enhancement in wireless systems. In particular, we delve into two major design issues for MA systems. First, we address the intricate antenna movement optimization problem for various communication and/or sensing systems to maximize the performance gains achievable by MAs. Second, we deal with the challenging channel acquisition issue in MA systems for reconstructing the channel mapping between arbitrary antenna positions inside the transmitter and receiver regions. Moreover, we show existing prototypes developed for MA-aided communication/sensing and the experimental results based on them. Finally, the extension of MA design to other wireless systems and its synergy with other emerging wireless technologies are discussed.
Abstract:Obstacle sensing is essential for terahertz (THz) communication since the subsequent beam management can avoid THz signals blocked by the obstacles. In parallel, radio environment, which can be manifested by channel knowledge such as the distribution of received signal strength (RSS), reveals signal propagation situation and the corresponding obstacle information. However, the awareness of the radio environment for obstacle sensing is challenging in practice, as the sparsely deployed THz sensors can acquire only little a priori knowledge with their RSS measurements. Therefore, we formulate in this paper a radio environment awareness problem, which for the first time considers a probability distribution of obstacle attributes. To solve such a problem, we propose a THz-based generative radio environment awareness framework, in which obstacle information is obtained directly from the aware radio environment. We also propose a novel generative model based on conditional generative adversarial network (CGAN), where U-net and the objective function of the problem are introduced to enable accurate awareness of RSS distribution. Simulation results show that the proposed framework can improve the awareness of the radio environment, and thus achieve superior sensing performance in terms of average precision regarding obstacles' shape and location.
Abstract:The spatial diversity and multiplexing advantages of massive multi-input-multi-output (mMIMO) can significantly improve the capacity of massive non-orthogonal multiple access (NOMA) in machine type communications. However, state-of-the-art grant-free massive NOMA schemes for mMIMO systems require accurate estimation of random access channels to perform activity detection and the following coherent data demodulation, which suffers from excessive pilot overhead and access latency. To address this, we propose a pre-equalization aided grant-free massive access scheme for mMIMO systems, where an iterative detection scheme is conceived. Specifically, the base station (BS) firstly activates one of its antennas (i.e., beacon antenna) to broadcast a beacon signal, which facilitates the user equipment (UEs) to perform downlink channel estimation and pre-equalize the uplink random access signal with respect to the channels associated with the beacon antenna. During the uplink transmission stage, the BS detects UEs' activity and data by using the proposed iterative detection algorithm, which consists of three modules: coarse data detection (DD), data-aided channel estimation (CE), and fine DD. In the proposed algorithm, the joint activity and DD is firstly performed based on the signals received by the beacon antenna. Subsequently, the DD is further refined by iteratively performing data-aided CE module and fine DD module using signals received by all BS antennas. Our simulation results demonstrate that the proposed scheme outperforms state-of-the-art mMIMO-based grant-free massive NOMA schemes with the same access latency.
Abstract:Movable antennas (MAs) show great promise for enhancing the sensing capabilities of future sixth-generation (6G) networks. With the growing prevalence of near-field propagation at ultra-high frequencies, this paper focuses on the application of MAs for near-field sensing to jointly estimate the angle and distance information of a target. First, to gain essential insights into MA-enhanced near-field sensing, we investigate two simplified cases with only the spatial angle-of-arrival (AoA) or distance estimation, respectively, assuming that the other information is already known. We derive the worst-case Cramer-Rao bounds (CRBs) on the mean square errors (MSEs) of the AoA estimation and the distance estimation via the multiple signal classification (MUSIC) algorithm in these two cases. Then, we jointly optimize the positions of the MAs within a linear array to minimize these CRBs and derive their closed-form solutions, which yield an identical array geometry to MA-aided far-field sensing. Furthermore, we proceed to the more challenging case with the joint AoA and distance estimation and derive the worst-case CRB under the two-dimensional (2D) MUSIC algorithm. The corresponding CRB minimization problem is efficiently solved by adopting a discrete sampling-based approach. Numerical results demonstrate that the proposed MA-enhanced near-field sensing significantly outperforms conventional sensing with fixed-position antennas (FPAs). Moreover, the joint angle and distance estimation results in a different array geometry from that in the individual estimation of angle or distance.
Abstract:We investigate the performance tradeoff between \textit{bistatic positioning (BP)} and \textit{monostatic sensing (MS)} in a multi-input multi-output orthogonal frequency division multiplexing scenario. We derive the Cram\'er-Rao bounds (CRBs) for BP at the user equipment and MS at the base station. To balance these objectives, we propose a multi-objective optimization framework that optimizes beamformers using a weighted-sum CRB approach, ensuring the weak Pareto boundary. We also introduce two mismatch-minimizing approaches, targeting beamformer mismatch and variance matrix mismatch, and solve them distinctly. Numerical results demonstrate the performance tradeoff between BP and MS, revealing significant gains with the proposed methods and highlighting the advantages of minimizing the weighted-sum mismatch of variance matrices.
Abstract:Movable antenna (MA) has been deemed as a promising technology to flexibly reconfigure wireless channels by adjusting the antenna positions in a given local region. In this paper, we investigate the application of the MA technology in both decode-and-forward (DF) and amplify-and-forward (AF) relaying systems, where a relay is equipped with multiple MAs to assist in the data transmission between two single-antenna nodes. For the DF relaying system, our objective is to maximize the achievable rate at the destination by jointly optimizing the positions of the MAs in two stages for receiving signals from the source and transmitting signals to the destination, respectively. To drive essential insights, we first derive a closed-form upper bound on the maximum achievable rate of the DF relaying system. Then, a low-complexity algorithm based on projected gradient ascent (PGA) and alternating optimization (AO) is proposed to solve the antenna position optimization problem. For the AF relaying system, our objective is to maximize the achievable rate by jointly optimizing the two-stage MA positions as well as the AF beamforming matrix at the relay, which results in a more challenging optimization problem due to the intricate coupling variables. To tackle this challenge, we first reveal the hidden separability among the antenna position optimization in the two stages and the beamforming optimization. Based on such separability, we derive a closed-form upper bound on the maximum achievable rate of the AF relaying system and propose a low-complexity algorithm to obtain a high-quality suboptimal solution to the considered problem. Simulation results validate the efficacy of our theoretical analysis and demonstrate the superiority of the MA-enhanced relaying systems to the conventional relaying systems with fixed-position antennas (FPAs) and other benchmark schemes.