Abstract:Fluid antenna system (FAS) as a new version of reconfigurable antenna technologies promoting shape and position flexibility, has emerged as an exciting and possibly transformative technology for wireless communications systems. FAS represents any software-controlled fluidic, conductive or dielectric structure that can dynamically alter antenna's shape and position to change the gain, the radiation pattern, the operating frequency, and other critical radiation characteristics. With its capability, it is highly anticipated that FAS can contribute greatly to the upcoming sixth generation (6G) wireless networks. This article substantiates this thought by addressing four major questions: 1) Is FAS crucial to 6G? 2) How to characterize FAS? 3) What are the applications of FAS? 4) What are the relevant challenges and future research directions? In particular, five promising research directions that underscore the potential of FAS are discussed. We conclude this article by showcasing the impressive performance of FAS.
Abstract:In this paper, we explore a dual-sniffer passive localization system that detects the timing difference of signals from both commercial base station (eNb) and user equipment (UE) to the sniffers. We design two localization schemes for UE localization: a time of arrival (ToA) based scheme and a time difference of arrival (TDoA) based scheme. In the ToA-based scheme, we derive two ellipse equations from measured arrival times at two sniffers, enabling direct numerical computation of the estimated position. For the TDoA-based scheme, we relocate one sniffer to a different position to obtain two sets of TDoA measurements, resulting in hyperbola equations. We then apply a least squares (LS) algorithm to analytically estimate the UE's position. Simulation results validate the effectiveness of the proposed TDoA-based scheme, demonstrating improved accuracy in UE positioning.We build a platform based on the considered localization system and conduct real-world experiments. The experimental results confirm the accuracy and practicality of the TDoA-based dual-sniffer localization scheme, demonstrating improved precision in passive localization.