Abstract:In this paper, we pave the way to six-generation (6G) by investigating the outage probability (OP) of fluid antenna system (FAS)-active reconfigurable intelligent surface (ARIS) communication systems. We consider a FAS-ARIS setup consisting of a base station (BS) with a single fixed-position antenna and a receiver equipped with a fluid antenna (FA). Utilizing the block-correlation model, we derive a closed-form expression for the OP. Our analysis, supported by numerical results, confirms the accuracy and effectiveness of the derivation. Furthermore, the results demonstrate that the FAS-ARIS system significantly outperforms other configurations in terms of OP, highlighting its potential to enhance communication performance and reliability in future 6G networks.
Abstract:In this paper, we conduct a theoretical analysis of how to integrate reconfigurable intelligent surfaces (RIS) with cooperative non-orthogonal multiple access (NOMA), considering URLLC. We consider a downlink two-user cooperative NOMA system employing short-packet communications, where the two users are denoted by the central user (CU) and the cell-edge user (CEU), respectively, and an RIS is deployed to enhance signal quality. Specifically, compared to CEU, CU lies nearer from BS and enjoys the higher channel gains. Closed-form expressions for the CU's average block error rate (BLER) are derived. Furthermore, we evaluate the CEU's BLER performance utilizing selective combining (SC) and derive a tight lower bound under maximum ratio combining (MRC). Simulation results are provided to our analyses and demonstrate that the RIS-assisted system significantly outperforms its counterpart without RIS in terms of BLER. Notably, MRC achieves a squared multiple of the diversity gain of the SC, leading to more reliable performance, especially for the CEU. Furthermore, by dividing the RIS into two zones, each dedicated to a specific user, the average BLER can be further reduced, particularly for the CEU.
Abstract:This correspondence investigates the novel fluid antenna system (FAS) technology, combining with reconfigurable intelligent surface (RIS) for wireless communications, where a base station (BS) communicates with a FAS-enabled user with the assistance of a RIS. To analyze this technology, we derive the outage probability based on the block-diagonal matrix approximation (BDMA) model. With this, we obtain the upper bound, lower bound, and asymptotic approximation of the outage probability to gain more insights. Moreover, we design the phase shift matrix of the RIS in order to minimize the system outage probability. Simulation results confirm the accuracy of our approximations and that the proposed schemes outperform benchmarks significantly.
Abstract:In this correspondence, we analyze the performance of a reconfigurable intelligent surface (RIS)-aided communication system that involves a fluid antenna system (FAS)-enabled receiver. By applying the central limit theorem (CLT), we derive approximate expressions for the system outage probability when the RIS has a large number of elements. Also, we adopt the block-correlation channel model to simplify the outage probability expressions, reducing the computational complexity and shedding light on the impact of the number of ports. Numerical results validate the effectiveness of our analysis, especially in scenarios with a large number of RIS elements.
Abstract:In this paper, we investigate the question of which technology, fluid antenna systems (FAS) or active reconfigurable intelligent surfaces (ARIS), plays a more crucial role in FAS-ARIS wireless communication systems. To address this, we develop a comprehensive system model and explore the problem from an optimization perspective. We introduce an alternating optimization (AO) algorithm incorporating majorization-minimization (MM), successive convex approximation (SCA), and sequential rank-one constraint relaxation (SRCR) to tackle the non-convex challenges inherent in these systems. Specifically, for the transmit beamforming of the BS optimization, we propose a closed-form rank-one solution with low-complexity. For the optimization the positions of fluid antennas (FAs) of the BS, the Taylor expansions and MM algorithm are utilized to construct the effective lower bounds and upper bounds of the objective function and constraints, transforming the non-convex optimization problem into a convex one. Furthermore, we use the SCA and SRCR to optimize the reflection coefficient matrix of the ARIS and effectively solve the rank-one constraint. Simulation results reveal that the relative importance of FAS and ARIS varies depending on the scenario: FAS proves more critical in simpler models with fewer reflecting elements or limited transmission paths, while ARIS becomes more significant in complex scenarios with a higher number of reflecting elements or transmission paths. Ultimately, the integration of both FAS and ARIS creates a win-win scenario, resulting in a more robust and efficient communication system. This study underscores the importance of combining FAS with ARIS, as their complementary use provides the most substantial benefits across different communication environments.
Abstract:This paper examines a fluid antenna (FA)-assisted simultaneous wireless information and power transfer (SWIPT) system. Unlike traditional SWIPT systems with fixed-position antennas (FPAs), our FA-assisted system enables dynamic reconfiguration of the radio propagation environment by adjusting the positions of FAs. This capability enhances both energy harvesting and communication performance. The system comprises a base station (BS) equipped with multiple FAs that transmit signals to an energy receiver (ER) and an information receiver (IR), both equipped with a single FA. Our objective is to maximize the communication rate between the BS and the IR while satisfying the harvested power requirement of the ER. This involves jointly optimizing the BS's transmit beamforming and the positions of all FAs. To address this complex convex optimization problem, we employ an alternating optimization (AO) approach, decomposing it into three sub-problems and solving them iteratively using first and second-order Taylor expansions. Simulation results validate the effectiveness of our proposed FA-assisted SWIPT system, demonstrating significant performance improvements over traditional FPA-based systems.
Abstract:In this paper, we investigate reconfigurable intelligent surface (RIS)-assisted communication systems which involve a fixed-antenna base station (BS) and a mobile user (MU) that is equipped with fluid antenna system (FAS). Specifically, the RIS is utilized to enable communication for the user whose direct link from the base station is blocked by obstacles. We propose a comprehensive framework that provides transmission design for both static scenarios with the knowledge of channel state information (CSI) and harsh environments where CSI is hard to acquire. It leads to two approaches: a CSI-based scheme where CSI is available, and a CSI-free scheme when CSI is inaccessible. Given the complex spatial correlations in FAS, we employ block-diagonal matrix approximation and independent antenna equivalent models to simplify the derivation of outage probabilities in both cases. Based on the derived outage probabilities, we then optimize the throughput of the FAS-RIS system. For the CSI-based scheme, we first propose a gradient ascent-based algorithm to obtain a near-optimal solution. Then, to address the possible high computational complexity in the gradient algorithm, we approximate the objective function and confirm a unique optimal solution accessible through a bisection search method. For the CSI-free scheme, we apply the partial gradient ascent algorithm, reducing complexity further than full gradient algorithms. We also approximate the objective function and derive a locally optimal closed-form solution to maximize throughput. Simulation results validate the effectiveness of the proposed framework for the transmission design in FAS-RIS systems.
Abstract:This paper investigates covert data transmission within a multiple-input multiple-output (MIMO) over-the-air computation (AirComp) network, where sensors transmit data to the access point (AP) while guaranteeing covertness to the warden (Willie). Simultaneously, the AP introduces artificial noise (AN) to confuse Willie, meeting the covert requirement. We address the challenge of minimizing mean-square-error (MSE) of the AP, while considering transmit power constraints at both the AP and the sensors, as well as ensuring the covert transmission to Willie with a low detection error probability (DEP). However, obtaining globally optimal solutions for the investigated non-convex problem is challenging due to the interdependence of optimization variables. To tackle this problem, we introduce an exact penalty algorithm and transform the optimization problem into a difference-of-convex (DC) form problem to find a locally optimal solution. Simulation results showcase the superior performance in terms of our proposed scheme in comparison to the benchmark schemes.
Abstract:This paper addresses the fairness issue within fluid antenna system (FAS)-assisted non-orthogonal multiple access (NOMA) and orthogonal multiple access (OMA) systems, where a single fixed-antenna base station (BS) transmits superposition-coded signals to two users, each with a single fluid antenna. We define fairness through the minimization of the maximum outage probability for the two users, under total resource constraints for both FAS-assisted NOMA and OMA systems. Specifically, in the FAS-assisted NOMA systems, we study both a special case and the general case, deriving a closed-form solution for the former and applying a bisection search method to find the optimal solution for the latter. Moreover, for the general case, we derive a locally optimal closed-form solution to achieve fairness. In the FAS-assisted OMA systems, to deal with the non-convex optimization problem with coupling of the variables in the objective function, we employ an approximation strategy to facilitate a successive convex approximation (SCA)-based algorithm, achieving locally optimal solutions for both cases. Empirical analysis validates that our proposed solutions outperform conventional NOMA and OMA benchmarks in terms of fairness.
Abstract:This paper investigates the efficacy of utilizing fluid antenna system (FAS) at a legitimate monitor to oversee suspicious communication. The monitor switches the antenna position to minimize its outage probability for enhancing the monitoring performance. Our objective is to maximize the average monitoring rate, whose expression involves the integral of the first-order Marcum $Q$ function. The optimization problem, as initially posed, is non-convex owing to its objective function. Nevertheless, upon substituting with an upper bound, we provide a theoretical foundation confirming the existence of a unique optimal solution for the modified problem, achievable efficiently by the bisection search method. Furthermore, we also introduce a locally closed-form optimal resolution for maximizing the average monitoring rate. Empirical evaluations confirm that the proposed schemes outperform conventional benchmarks considerably.