Fellow, IEEE
Abstract:The burgeoning significance of the low-altitude economy (LAE) has garnered considerable interest, largely fuelled by the widespread deployment of unmanned aerial vehicles (UAVs). To tackle the challenges associated with the detection of unauthorized UAVs and the efficient scheduling of authorized UAVs, this letter introduces a novel performance metric, termed sensing capacity, for integrated sensing and communication (ISAC) systems. This metric, which quantifies the capability of a base station (BS) to detect multiple UAVs simultaneously, leverages signal-to-noise ratio (SNR) and probability of detection (PD) as key intermediate variables. Through mathematical derivations, we can derive a closed-form solution for the maximum number of UAVs that can be detected by the BS while adhering to a specific SNR constraint. Furthermore, an approximate solution based on PD constraints is proposed to facilitate the efficient determination of the threshold for the maximum number of detectable UAVs. The accuracy of this analytical approach is verified through extensive simulation results.
Abstract:Most existing DOA estimation methods assume ideal source incident angles with minimal noise. Moreover, directly using pre-estimated angles to calculate weighted coefficients can lead to performance loss. Thus, a green multi-modal (MM) fusion DOA framework is proposed to realize a more practical, low-cost and high time-efficiency DOA estimation for a H$^2$AD array. Firstly, two more efficient clustering methods, global maximum cos\_similarity clustering (GMaxCS) and global minimum distance clustering (GMinD), are presented to infer more precise true solutions from the candidate solution sets. Based on this, an iteration weighted fusion (IWF)-based method is introduced to iteratively update weighted fusion coefficients and the clustering center of the true solution classes by using the estimated values. Particularly, the coarse DOA calculated by fully digital (FD) subarray, serves as the initial cluster center. The above process yields two methods called MM-IWF-GMaxCS and MM-IWF-GMinD. To further provide a higher-accuracy DOA estimation, a fusion network (fusionNet) is proposed to aggregate the inferred two-part true angles and thus generates two effective approaches called MM-fusionNet-GMaxCS and MM-fusionNet-GMinD. The simulation outcomes show the proposed four approaches can achieve the ideal DOA performance and the CRLB. Meanwhile, proposed MM-fusionNet-GMaxCS and MM-fusionNet-GMinD exhibit superior DOA performance compared to MM-IWF-GMaxCS and MM-IWF-GMinD, especially in extremely-low SNR range.
Abstract:The rapid development of generative Artificial Intelligence (AI) continually unveils the potential of Semantic Communication (SemCom). However, current talking-face SemCom systems still encounter challenges such as low bandwidth utilization, semantic ambiguity, and diminished Quality of Experience (QoE). This study introduces a Large Generative Model-assisted Talking-face Semantic Communication (LGM-TSC) System tailored for the talking-face video communication. Firstly, we introduce a Generative Semantic Extractor (GSE) at the transmitter based on the FunASR model to convert semantically sparse talking-face videos into texts with high information density. Secondly, we establish a private Knowledge Base (KB) based on the Large Language Model (LLM) for semantic disambiguation and correction, complemented by a joint knowledge base-semantic-channel coding scheme. Finally, at the receiver, we propose a Generative Semantic Reconstructor (GSR) that utilizes BERT-VITS2 and SadTalker models to transform text back into a high-QoE talking-face video matching the user's timbre. Simulation results demonstrate the feasibility and effectiveness of the proposed LGM-TSC system.
Abstract:As a physical layer security technology, directional modulation (DM) can be combined with intelligent reflect-ing surface (IRS) to improve the security of drone communications. In this paper, a directional modulation scheme assisted by the IRS is proposed to maximize the transmission rate of unmanned aerial vehicle (UAV) secure communication. Specifically, with the assistance of the IRS, the UAV transmits legitimate information and main-tains its constellation pattern at the location of legitimate users on the ground, while the constellation pattern is disrupted at the eavesdropper's location. In order to solve the joint optimization problem of digital weight coefficients, UAV position, and IRS discrete phase shift, firstly, the digital weight vector and UAV position are optimized through power minimization. Secondly, three methods are proposed to optimize IRS phase shift, namely vector trajectory (VT) method, cross entropy vector trajectory (CE-VT) algorithm, and block coordinate descent vector trajectory (BCD-VT) algorithm. Compared to traditional cross entropy (CE) methods and block coordinate descent (BCD) methods, the proposed CE-VT and BCD-VT algorithms can improve transmission rate performance. The numerical results validate the effectiveness of the optimization scheme in IRS assisted UAV communication.
Abstract:Dual function radar and communication (DFRC) is a promising research direction within integrated sensing and communication (ISAC), improving hardware and spectrum efficiency by merging sensing and communication (S&C) functionalities into a shared platform. However, the DFRC receiver (DFRC-R) is tasked with both uplink communication signal detection and simultaneously target-related parameter estimation from the echoes, leading to issues with mutual interference. In this paper, a projection-based scheme is proposed to equivalently transform the joint signal detection and target estimation problem into a joint signal detection process across multiple snapshots. Compared with conventional successive interference cancellation (SIC) schemes, our proposed approach achieves a higher signal-to-noise ratio (SNR), and a higher ergodic rate when the radar signal is non-negligible. Nonetheless, it introduces an ill-conditioned signal detection problem, which is addressed using a non-linear detector. By jointly processing an increased number of snapshots, the proposed scheme can achieve high S&C performance simultaneously.
Abstract:In this paper, we investigate reconfigurable intelligent surface (RIS)-assisted communication systems which involve a fixed-antenna base station (BS) and a mobile user (MU) that is equipped with fluid antenna system (FAS). Specifically, the RIS is utilized to enable communication for the user whose direct link from the base station is blocked by obstacles. We propose a comprehensive framework that provides transmission design for both static scenarios with the knowledge of channel state information (CSI) and harsh environments where CSI is hard to acquire. It leads to two approaches: a CSI-based scheme where CSI is available, and a CSI-free scheme when CSI is inaccessible. Given the complex spatial correlations in FAS, we employ block-diagonal matrix approximation and independent antenna equivalent models to simplify the derivation of outage probabilities in both cases. Based on the derived outage probabilities, we then optimize the throughput of the FAS-RIS system. For the CSI-based scheme, we first propose a gradient ascent-based algorithm to obtain a near-optimal solution. Then, to address the possible high computational complexity in the gradient algorithm, we approximate the objective function and confirm a unique optimal solution accessible through a bisection search method. For the CSI-free scheme, we apply the partial gradient ascent algorithm, reducing complexity further than full gradient algorithms. We also approximate the objective function and derive a locally optimal closed-form solution to maximize throughput. Simulation results validate the effectiveness of the proposed framework for the transmission design in FAS-RIS systems.
Abstract:In this paper, we investigate a movable antenna (MA)-aided integrated sensing and communication (ISAC) system, where a reconfigurable intelligent surface (RIS) is employed to enhance wireless communication and sensing performance in dead zones. Specifically, this paper aims to maximize the minimum beampattern gain at the RIS by jointly optimizing beamforming matrix at the base station (BS), the reflecting coefficients at the RIS and the positions of the MAs, subject to signal-to-interference-plus-noise ratio (SINR) constraint for the users and maximum transmit power at the BS. To tackle this non-convex optimization problem, we propose an alternating optimization (AO) algorithm and employ semidefinite relaxation (SDR), sequential rank-one constraint relaxation (SRCR) and successive convex approximation (SCA) techniques. Numerical results indicate that the MA and RIS-aided ISAC system outperforms conventional fixed position antenna (FPA) and RIS-aided systems. In addition, the application of MAs can reduce the similarity of user channels and enhance channel gain in the ISAC system.
Abstract:A fully-digital massive MIMO receive array is promising to meet the high-resolution requirement of near-field (NF) emitter localization, but it also results in the significantly increasing of hardware costs and algorithm complexity. In order to meet the future demand for green communication while maintaining high performance, the grouped hybrid analog and digital (HAD) structure is proposed for NF DOA estimation, which divides the large-scale receive array into small-scale groups and each group contains several subarrays. Thus the NF direction-of-arrival (DOA) estimation problem is viewed as far-field (FF) within each group, and some existing methods such as MUSIC, Root-MUSIC, ESPRIT, etc., can be adopted. Then by angle calibration, a candidate position set is generated. To eliminate the phase ambiguity arising from the HAD structure and obtain the emitter position, two low-complexity clustering-based methods, minimum sample distance clustering (MSDC) and range scatter diagram (RSD) - angle scatter diagram (ASD)-based DBSCAN (RSD-ASD-DBSCAN), are proposed based on the distribution features of samples in the candidate position set. Then to further improve the localization accuracy, a model-driven regression network (RegNet) is designed, which consists of a multi-layer neural network (MLNN) for false solution elimination and a perceptron for angle fusion. Finally, the Cramer-Rao lower bound (CRLB) of NF emitter localization for the proposed grouped HAD structure is also derived. The simulation results show that the proposed methods can achieve CRLB at different SNR regions, the RegNet has great performance advantages at low SNR regions and the clustering-based methods have much lower complexity.
Abstract:This paper analyzes the impact of pilot-sharing scheme on synchronization performance in a scenario where several slave access points (APs) with uncertain carrier frequency offsets (CFOs) and timing offsets (TOs) share a common pilot sequence. First, the Cramer-Rao bound (CRB) with pilot contamination is derived for pilot-pairing estimation. Furthermore, a maximum likelihood algorithm is presented to estimate the CFO and TO among the pairing APs. Then, to minimize the sum of CRBs, we devise a synchronization strategy based on a pilot-sharing scheme by jointly optimizing the cluster classification, synchronization overhead, and pilot-sharing scheme, while simultaneously considering the overhead and each AP's synchronization requirements. To solve this NP-hard problem, we simplify it into two sub-problems, namely cluster classification problem and the pilot sharing problem. To strike a balance between synchronization performance and overhead, we first classify the clusters by using the K-means algorithm, and propose a criteria to find a good set of master APs. Then, the pilot-sharing scheme is obtained by using the swap-matching operations. Simulation results validate the accuracy of our derivations and demonstrate the effectiveness of the proposed scheme over the benchmark schemes.
Abstract:Active reconfigurable intelligent surface (RIS) has attracted significant attention as a recently proposed RIS architecture. Owing to its capability to amplify the incident signals, active RIS can mitigate the multiplicative fading effect inherent in the passive RIS-aided system. In this paper, we consider an active RIS-aided uplink multi-user massive multiple-input multiple-output (MIMO) system in the presence of phase noise at the active RIS. Specifically, we employ a two-timescale scheme, where the beamforming at the base station (BS) is adjusted based on the instantaneous aggregated channel state information (CSI) and the statistical CSI serves as the basis for designing the phase shifts at the active RIS, so that the feedback overhead and computational complexity can be significantly reduced. The aggregated channel composed of the cascaded and direct channels is estimated by utilizing the linear minimum mean square error (LMMSE) technique. Based on the estimated channel, we derive the analytical closed-form expression of a lower bound of the achievable rate. The power scaling laws in the active RIS-aided system are investigated based on the theoretical expressions. When the transmit power of each user is scaled down by the number of BS antennas M or reflecting elements N, we find that the thermal noise will cause the lower bound of the achievable rate to approach zero, as the number of M or N increases to infinity. Moreover, an optimization approach based on genetic algorithms (GA) is introduced to tackle the phase shift optimization problem. Numerical results reveal that the active RIS can greatly enhance the performance of the considered system under various settings.