Abstract:In this paper, to fully exploit the performance gains from moveable antennas (MAs) and reconfigurable intelligent surface (RIS), a RIS-aided directional modulation \textcolor{blue}{(DM)} network with movable antenna at base station (BS) is established Based on the principle of DM, a BS equipped with MAs transmits legitimate information to a single-antenna user (Bob) while exploiting artificial noise (AN) to degrade signal reception at the eavesdropper (Eve). The combination of AN and transmission beamforming vectors is modeled as joint beamforming vector (JBV) to achieve optimal power allocation. The objective is to maximize the achievable secrecy rate (SR) by optimizing MAs antenna position, phase shift matrix (PSM) of RIS, and JBV. The limited movable range (MR) and discrete candidate positions of the MAs at the BS are considered, which renders the optimization problem non-convex. To address these challenges, an optimization method under perfect channel state information (CSI) is firstly designed, in which the MAs antenna positions are obtained using compressive sensing (CS) technology, and JBV and PSM are iteratively optimized. Then, the design method and SR performance under imperfect CSI is investigated. The proposed algorithms have fewer iterations and lower complexity. Simulation results demonstrate that MAs outperform fixed-position antennas in SR performance when there is an adequately large MR available.
Abstract:Adapting pre-trained foundation models for diverse downstream tasks is a core practice in artificial intelligence. However, the wide range of tasks and high computational costs make full fine-tuning impractical. To overcome this, parameter-efficient fine-tuning (PEFT) methods like LoRA have emerged and are becoming a growing research focus. Despite the success of these methods, they are primarily designed for linear layers, focusing on two-dimensional matrices while largely ignoring higher-dimensional parameter spaces like convolutional kernels. Moreover, directly applying these methods to higher-dimensional parameter spaces often disrupts their structural relationships. Given the rapid advancements in matrix-based PEFT methods, rather than designing a specialized strategy, we propose a generalization that extends matrix-based PEFT methods to higher-dimensional parameter spaces without compromising their structural properties. Specifically, we treat parameters as elements of a Lie group, with updates modeled as perturbations in the corresponding Lie algebra. These perturbations are mapped back to the Lie group through the exponential map, ensuring smooth, consistent updates that preserve the inherent structure of the parameter space. Extensive experiments on computer vision and natural language processing validate the effectiveness and versatility of our approach, demonstrating clear improvements over existing methods.
Abstract:Controversial contents largely inundate the Internet, infringing various cultural norms and child protection standards. Traditional Image Content Moderation (ICM) models fall short in producing precise moderation decisions for diverse standards, while recent multimodal large language models (MLLMs), when adopted to general rule-based ICM, often produce classification and explanation results that are inconsistent with human moderators. Aiming at flexible, explainable, and accurate ICM, we design a novel rule-based dataset generation pipeline, decomposing concise human-defined rules and leveraging well-designed multi-stage prompts to enrich short explicit image annotations. Our ICM-Instruct dataset includes detailed moderation explanation and moderation Q-A pairs. Built upon it, we create our ICM-Assistant model in the framework of rule-based ICM, making it readily applicable in real practice. Our ICM-Assistant model demonstrates exceptional performance and flexibility. Specifically, it significantly outperforms existing approaches on various sources, improving both the moderation classification (36.8\% on average) and moderation explanation quality (26.6\% on average) consistently over existing MLLMs. Code/Data is available at https://github.com/zhaoyuzhi/ICM-Assistant.
Abstract:We introduce InternVL 2.5, an advanced multimodal large language model (MLLM) series that builds upon InternVL 2.0, maintaining its core model architecture while introducing significant enhancements in training and testing strategies as well as data quality. In this work, we delve into the relationship between model scaling and performance, systematically exploring the performance trends in vision encoders, language models, dataset sizes, and test-time configurations. Through extensive evaluations on a wide range of benchmarks, including multi-discipline reasoning, document understanding, multi-image / video understanding, real-world comprehension, multimodal hallucination detection, visual grounding, multilingual capabilities, and pure language processing, InternVL 2.5 exhibits competitive performance, rivaling leading commercial models such as GPT-4o and Claude-3.5-Sonnet. Notably, our model is the first open-source MLLMs to surpass 70% on the MMMU benchmark, achieving a 3.7-point improvement through Chain-of-Thought (CoT) reasoning and showcasing strong potential for test-time scaling. We hope this model contributes to the open-source community by setting new standards for developing and applying multimodal AI systems. HuggingFace demo see https://huggingface.co/spaces/OpenGVLab/InternVL
Abstract:Due to its ability of significantly improving data rate, intelligent reflecting surface (IRS) will be a potential crucial technique for the future generation wireless networks like 6G. In this paper, we will focus on the analysis of degree of freedom (DoF) in IRS-aided multi-user MIMO network. Firstly, the DoF upper bound of IRS-aided single-user MIMO network, i.e., the achievable maximum DoF of such a system, is derived, and the corresponding results are extended to the case of IRS-aided multiuser MIMO by using the matrix rank inequalities. In particular, in serious rank-deficient, also called low-rank, channels like line-of-sight (LoS), the network DoF may doubles over no-IRS with the help of IRS. To verify the rate performance gain from augmented DoF, three closed-form beamforming methods, null-space projection plus maximize transmit power and maximize receive power (NSP-MTP-MRP), Schmidt orthogonalization plus minimum mean square error (SO-MMSE) and two-layer leakage plus MMSE (TLL-MMSE) are proposed to achieve the maximum DoF. Simulation results shows that IRS does make a dramatic rate enhancement. For example, in a serious deficient channel, the sum-rate of the proposed TLL-MMSE aided by IRS is about twice that of no IRS. This means that IRS may achieve a significant DoF improvement in such a channel.
Abstract:Since the secrecy rate (SR) performance improvement obtained by secure directional modulation (DM) network is limited, an active intelligent reflective surface (IRS)-assisted DM network is considered to attain a high SR. To address the SR maximization problem, a novel method based on Lagrangian dual transform and closed-form fractional programming algorithm (LDT-CFFP) is proposed, where the solutions to base station (BS) beamforming vectors and IRS reflection coefficient matrix are achieved. However, the computational complexity of LDT-CFFP method is high . To reduce its complexity, a blocked IRS-assisted DM network is designed. To meet the requirements of the network performance, a power allocation (PA) strategy is proposed and adopted in the system. Specifically, the system power between BS and IRS, as well as the transmission power for confidential messages (CM) and artificial noise (AN) from the BS, are allocated separately. Then we put forward null-space projection (NSP) method, maximum-ratio-reflecting (MRR) algorithm and PA strategy (NSP-MRR-PA) to solve the SR maximization problem. The CF solutions to BS beamforming vectors and IRS reflection coefficient matrix are respectively attained via NSP and MRR algorithms. For the PA factors, we take advantage of exhaustive search (ES) algorithm, particle swarm optimization (PSO) and simulated annealing (SA) algorithm to search for the solutions. From simulation results, it is verified that the LDT-CFFP method derives a higher SR gain over NSP-MRR-PA method. For NSP-MRR-PA method, the number of IRS units in each block possesses a significant SR performance. In addition, the application PA strategies, namely ES, PSO, SA methods outperforms the other PA strategies with fixed PA factors.
Abstract:Adapting pre-trained foundation models for various downstream tasks has been prevalent in artificial intelligence. Due to the vast number of tasks and high costs, adjusting all parameters becomes unfeasible. To mitigate this, several fine-tuning techniques have been developed to update the pre-trained model weights in a more resource-efficient manner, such as through low-rank adjustments. Yet, almost all of these methods focus on linear weights, neglecting the intricacies of parameter spaces in higher dimensions like 4D. Alternatively, some methods can be adapted for high-dimensional parameter space by compressing changes in the original space into two dimensions and then employing low-rank matrix decomposition. However, these approaches destructs the structural integrity of the involved high-dimensional spaces. To tackle the diversity of dimensional spaces across different foundation models and provide a more precise representation of the changes within these spaces, this paper introduces a generalized parameter-efficient fine-tuning framework, FLoRA, designed for various dimensional parameter space. Specifically, utilizing Tucker decomposition, FLoRA asserts that changes in each dimensional parameter space are based on a low-rank core space which maintains the consistent topological structure with the original space. It then models the changes through this core space alongside corresponding weights to reconstruct alterations in the original space. FLoRA effectively preserves the structural integrity of the change of original N-dimensional parameter space, meanwhile decomposes it via low-rank tensor decomposition. Extensive experiments on computer vision, natural language processing and multi-modal tasks validate FLoRA's effectiveness. Codes are available at https://github.com/SJTU-DeepVisionLab/FLoRA.
Abstract:Weakly Incremental Learning for Semantic Segmentation (WILSS) leverages a pre-trained segmentation model to segment new classes using cost-effective and readily available image-level labels. A prevailing way to solve WILSS is the generation of seed areas for each new class, serving as a form of pixel-level supervision. However, a scenario usually arises where a pixel is concurrently predicted as an old class by the pre-trained segmentation model and a new class by the seed areas. Such a scenario becomes particularly problematic in WILSS, as the lack of pixel-level annotations on new classes makes it intractable to ascertain whether the pixel pertains to the new class or not. To surmount this issue, we propose an innovative, tendency-driven relationship of mutual exclusivity, meticulously tailored to govern the behavior of the seed areas and the predictions generated by the pre-trained segmentation model. This relationship stipulates that predictions for the new and old classes must not conflict whilst prioritizing the preservation of predictions for the old classes, which not only addresses the conflicting prediction issue but also effectively mitigates the inherent challenge of incremental learning - catastrophic forgetting. Furthermore, under the auspices of this tendency-driven mutual exclusivity relationship, we generate pseudo masks for the new classes, allowing for concurrent execution with model parameter updating via the resolution of a bi-level optimization problem. Extensive experiments substantiate the effectiveness of our framework, resulting in the establishment of new benchmarks and paving the way for further research in this field.
Abstract:In partial label learning (PLL), each instance is associated with a set of candidate labels among which only one is ground-truth. The majority of the existing works focuses on constructing robust classifiers to estimate the labeling confidence of candidate labels in order to identify the correct one. However, these methods usually struggle to rectify mislabeled samples. To help existing PLL methods identify and rectify mislabeled samples, in this paper, we introduce a novel partner classifier and propose a novel ``mutual supervision'' paradigm. Specifically, we instantiate the partner classifier predicated on the implicit fact that non-candidate labels of a sample should not be assigned to it, which is inherently accurate and has not been fully investigated in PLL. Furthermore, a novel collaborative term is formulated to link the base classifier and the partner one. During each stage of mutual supervision, both classifiers will blur each other's predictions through a blurring mechanism to prevent overconfidence in a specific label. Extensive experiments demonstrate that the performance and disambiguation ability of several well-established stand-alone and deep-learning based PLL approaches can be significantly improved by coupling with this learning paradigm.
Abstract:Existing scene text detection methods typically rely on extensive real data for training. Due to the lack of annotated real images, recent works have attempted to exploit large-scale labeled synthetic data (LSD) for pre-training text detectors. However, a synth-to-real domain gap emerges, further limiting the performance of text detectors. Differently, in this work, we propose \textbf{FreeReal}, a real-domain-aligned pre-training paradigm that enables the complementary strengths of both LSD and unlabeled real data (URD). Specifically, to bridge real and synthetic worlds for pre-training, a novel glyph-based mixing mechanism (GlyphMix) is tailored for text images. GlyphMix delineates the character structures of synthetic images and embeds them as graffiti-like units onto real images. Without introducing real domain drift, GlyphMix freely yields real-world images with annotations derived from synthetic labels. Furthermore, when given free fine-grained synthetic labels, GlyphMix can effectively bridge the linguistic domain gap stemming from English-dominated LSD to URD in various languages. Without bells and whistles, FreeReal achieves average gains of 4.56\%, 3.85\%, 3.90\%, and 1.97\% in improving the performance of DBNet, PANet, PSENet, and FCENet methods, respectively, consistently outperforming previous pre-training methods by a substantial margin across four public datasets. Code will be released soon.