Southeast University, China
Abstract:In China, receptionist nurses face overwhelming workloads in outpatient settings, limiting their time and attention for each patient and ultimately reducing service quality. In this paper, we present the Personalized Intelligent Outpatient Reception System (PIORS). This system integrates an LLM-based reception nurse and a collaboration between LLM and hospital information system (HIS) into real outpatient reception setting, aiming to deliver personalized, high-quality, and efficient reception services. Additionally, to enhance the performance of LLMs in real-world healthcare scenarios, we propose a medical conversational data generation framework named Service Flow aware Medical Scenario Simulation (SFMSS), aiming to adapt the LLM to the real-world environments and PIORS settings. We evaluate the effectiveness of PIORS and SFMSS through automatic and human assessments involving 15 users and 15 clinical experts. The results demonstrate that PIORS-Nurse outperforms all baselines, including the current state-of-the-art model GPT-4o, and aligns with human preferences and clinical needs. Further details and demo can be found at https://github.com/FudanDISC/PIORS
Abstract:Several medical Multimodal Large Languange Models (MLLMs) have been developed to address tasks involving visual images with textual instructions across various medical modalities, achieving impressive results. Most current medical generalist models are region-agnostic, treating the entire image as a holistic representation. However, they struggle to identify which specific regions they are focusing on when generating a sentence.To mimic the behavior of doctors, who typically begin by reviewing the entire image before concentrating on specific regions for a thorough evaluation, we aim to enhance the capability of medical MLLMs in understanding anatomical regions within entire medical scans. To achieve it, we first formulate Region-Centric tasks and construct a large-scale dataset, MedRegInstruct, to incorporate regional information into training. Combining our collected dataset with other medical multimodal corpora for training, we propose a Region-Aware medical MLLM, MedRegA, which is the first bilingual generalist medical AI system to simultaneously handle image-level and region-level medical vision-language tasks across a broad range of modalities. Our MedRegA not only enables three region-centric tasks, but also achieves the best performance for visual question answering, report generation and medical image classification over 8 modalities, showcasing significant versatility. Experiments demonstrate that our model can not only accomplish powerful performance across various medical vision-language tasks in bilingual settings, but also recognize and detect structures in multimodal medical scans, boosting the interpretability and user interactivity of medical MLLMs. Our project page is https://medrega.github.io.
Abstract:Radiology is a vital and complex component of modern clinical workflow and covers many tasks. Recently, vision-language (VL) foundation models in medicine have shown potential in processing multimodal information, offering a unified solution for various radiology tasks. However, existing studies either pre-trained VL models on natural data or did not fully integrate vision-language architecture and pretraining, often neglecting the unique multimodal complexity in radiology images and their textual contexts. Additionally, their practical applicability in real-world scenarios remains underexplored. Here, we present RadFound, a large and open-source vision-language foundation model tailored for radiology, that is trained on the most extensive dataset of over 8.1 million images and 250,000 image-text pairs, covering 19 major organ systems and 10 imaging modalities. To establish expert-level multimodal perception and generation capabilities, RadFound introduces an enhanced vision encoder to capture intra-image local features and inter-image contextual information, and a unified cross-modal learning design tailored to radiology. To fully assess the models' capability, we construct a benchmark, RadVLBench, including radiology interpretation tasks like medical vision-language question-answering, as well as text generation tasks ranging from captioning to report generation. We also propose a human evaluation framework. When evaluated on the real-world benchmark involving three representative modalities, 2D images (chest X-rays), multi-view images (mammograms), and 3D images (thyroid CT scans), RadFound significantly outperforms other VL foundation models on both quantitative metrics and human evaluation. In summary, the development of RadFound represents an advancement in radiology generalists, demonstrating broad applicability potential for integration into clinical workflows.
Abstract:Blind iris images, which result from unknown degradation during the process of iris recognition at long distances, often lead to decreased iris recognition rates. Currently, little existing literature offers a solution to this problem. In response, we propose a prior embedding-driven architecture for long distance blind iris recognition. We first proposed a blind iris image restoration network called Iris-PPRGAN. To effectively restore the texture of the blind iris, Iris-PPRGAN includes a Generative Adversarial Network (GAN) used as a Prior Decoder, and a DNN used as the encoder. To extract iris features more efficiently, we then proposed a robust iris classifier by modifying the bottleneck module of InsightFace, which called Insight-Iris. A low-quality blind iris image is first restored by Iris-PPRGAN, then the restored iris image undergoes recognition via Insight-Iris. Experimental results on the public CASIA-Iris-distance dataset demonstrate that our proposed method significantly superior results to state-of-the-art blind iris restoration methods both quantitatively and qualitatively, Specifically, the recognition rate for long-distance blind iris images reaches 90% after processing with our methods, representing an improvement of approximately ten percentage points compared to images without restoration.
Abstract:Cryo-Electron Tomography (cryo-ET) is a 3D imaging technology facilitating the study of macromolecular structures at near-atomic resolution. Recent volumetric segmentation approaches on cryo-ET images have drawn widespread interest in biological sector. However, existing methods heavily rely on manually labeled data, which requires highly professional skills, thereby hindering the adoption of fully-supervised approaches for cryo-ET images. Some unsupervised domain adaptation (UDA) approaches have been designed to enhance the segmentation network performance using unlabeled data. However, applying these methods directly to cryo-ET images segmentation tasks remains challenging due to two main issues: 1) the source data, usually obtained through simulation, contain a certain level of noise, while the target data, directly collected from raw-data from real-world scenario, have unpredictable noise levels. 2) the source data used for training typically consists of known macromoleculars, while the target domain data are often unknown, causing the model's segmenter to be biased towards these known macromolecules, leading to a domain shift problem. To address these challenges, in this work, we introduce the first voxel-wise unsupervised domain adaptation approach, termed Vox-UDA, specifically for cryo-ET subtomogram segmentation. Vox-UDA incorporates a noise generation module to simulate target-like noises in the source dataset for cross-noise level adaptation. Additionally, we propose a denoised pseudo-labeling strategy based on improved Bilateral Filter to alleviate the domain shift problem. Experimental results on both simulated and real cryo-ET subtomogram datasets demonstrate the superiority of our proposed approach compared to state-of-the-art UDA methods.
Abstract:Accurate traffic forecasting is essential for effective urban planning and congestion management. Deep learning (DL) approaches have gained colossal success in traffic forecasting but still face challenges in capturing the intricacies of traffic dynamics. In this paper, we identify and address this challenges by emphasizing that spatial features are inherently dynamic and change over time. A novel in-depth feature representation, called Dynamic Spatio-Temporal (Dyn-ST) features, is introduced, which encapsulates spatial characteristics across varying times. Moreover, a Dynamic Spatio-Temporal Graph Transformer Network (DST-GTN) is proposed by capturing Dyn-ST features and other dynamic adjacency relations between intersections. The DST-GTN can model dynamic ST relationships between nodes accurately and refine the representation of global and local ST characteristics by adopting adaptive weights in low-pass and all-pass filters, enabling the extraction of Dyn-ST features from traffic time-series data. Through numerical experiments on public datasets, the DST-GTN achieves state-of-the-art performance for a range of traffic forecasting tasks and demonstrates enhanced stability.
Abstract:High-definition (HD) map is crucial for autonomous driving systems. Most existing works design map elements detection heads based on the DETR decoder. However, the initial queries lack explicit incorporation of physical positional information, and vanilla self-attention entails high computational complexity. Therefore, we propose EAN-MapNet for Efficiently constructing HD map using Anchor Neighborhoods. Firstly, we design query units based on the anchor neighborhoods, allowing non-neighborhood central anchors to effectively assist in fitting the neighborhood central anchors to the target points representing map elements. Then, we propose grouped local self-attention (GL-SA) by leveraging the relative instance relationship among the queries. This facilitates direct feature interaction among queries of the same instances, while innovatively employing local queries as intermediaries for interaction among queries from different instances. Consequently, GL-SA significantly reduces the computational complexity of self-attention while ensuring ample feature interaction among queries. On the nuScenes dataset, EAN-MapNet achieves a state-of-the-art performance with 63.0 mAP after training for 24 epochs, surpassing MapTR by 12.7 mAP. Furthermore, it considerably reduces memory consumption by 8198M compared to MapTRv2.
Abstract:Artificially generated induced pluripotent stem cells (iPSCs) from somatic cells play an important role for disease modeling and drug screening of neurodegenerative diseases. Astrocytes differentiated from iPSCs are important targets to investigate neuronal metabolism. The astrocyte differentiation progress can be monitored through the variations of morphology observed from microscopy images at different differentiation stages, then determined by molecular biology techniques upon maturation. However, the astrocytes usually ``perfectly'' blend into the background and some of them are covered by interference information (i.e., dead cells, media sediments, and cell debris), which makes astrocytes difficult to observe. Due to the lack of annotated datasets, the existing state-of-the-art deep learning approaches cannot be used to address this issue. In this paper, we introduce a new task named astrocyte segmentation with a novel dataset, called IAI704, which contains 704 images and their corresponding pixel-level annotation masks. Moreover, a novel frequency domain denoising network, named FDNet, is proposed for astrocyte segmentation. In detail, our FDNet consists of a contextual information fusion module (CIF), an attention block (AB), and a Fourier transform block (FTB). CIF and AB fuse multi-scale feature embeddings to localize the astrocytes. FTB transforms feature embeddings into the frequency domain and conducts a high-pass filter to eliminate interference information. Experimental results demonstrate the superiority of our proposed FDNet over the state-of-the-art substitutes in astrocyte segmentation, shedding insights for iPSC differentiation progress prediction.
Abstract:Adversarial generative models, such as Generative Adversarial Networks (GANs), are widely applied for generating various types of data, i.e., images, text, and audio. Accordingly, its promising performance has led to the GAN-based adversarial attack methods in the white-box and black-box attack scenarios. The importance of transferable black-box attacks lies in their ability to be effective across different models and settings, more closely aligning with real-world applications. However, it remains challenging to retain the performance in terms of transferable adversarial examples for such methods. Meanwhile, we observe that some enhanced gradient-based transferable adversarial attack algorithms require prolonged time for adversarial sample generation. Thus, in this work, we propose a novel algorithm named GE-AdvGAN to enhance the transferability of adversarial samples whilst improving the algorithm's efficiency. The main approach is via optimising the training process of the generator parameters. With the functional and characteristic similarity analysis, we introduce a novel gradient editing (GE) mechanism and verify its feasibility in generating transferable samples on various models. Moreover, by exploring the frequency domain information to determine the gradient editing direction, GE-AdvGAN can generate highly transferable adversarial samples while minimizing the execution time in comparison to the state-of-the-art transferable adversarial attack algorithms. The performance of GE-AdvGAN is comprehensively evaluated by large-scale experiments on different datasets, which results demonstrate the superiority of our algorithm. The code for our algorithm is available at: https://github.com/LMBTough/GE-advGAN
Abstract:As artificial intelligence (AI) increasingly becomes an integral part of our societal and individual activities, there is a growing imperative to develop responsible AI solutions. Despite a diverse assortment of machine learning fairness solutions is proposed in the literature, there is reportedly a lack of practical implementation of these tools in real-world applications. Industry experts have participated in thorough discussions on the challenges associated with operationalising fairness in the development of machine learning-empowered solutions, in which a shift toward human-centred approaches is promptly advocated to mitigate the limitations of existing techniques. In this work, we propose a human-in-the-loop approach for fairness auditing, presenting a mixed visual analytical system (hereafter referred to as 'FairCompass'), which integrates both subgroup discovery technique and the decision tree-based schema for end users. Moreover, we innovatively integrate an Exploration, Guidance and Informed Analysis loop, to facilitate the use of the Knowledge Generation Model for Visual Analytics in FairCompass. We evaluate the effectiveness of FairCompass for fairness auditing in a real-world scenario, and the findings demonstrate the system's potential for real-world deployability. We anticipate this work will address the current gaps in research for fairness and facilitate the operationalisation of fairness in machine learning systems.