Effective traffic signal control (TSC) is crucial in mitigating urban congestion and reducing emissions. Recently, reinforcement learning (RL) has been the research trend for TSC. However, existing RL algorithms face several real-world challenges that hinder their practical deployment in TSC: (1) Sensor accuracy deteriorates with increased sensor detection range, and data transmission is prone to noise, potentially resulting in unsafe TSC decisions. (2) During the training of online RL, interactions with the environment could be unstable, potentially leading to inappropriate traffic signal phase (TSP) selection and traffic congestion. (3) Most current TSC algorithms focus only on TSP decisions, overlooking the critical aspect of phase duration, affecting safety and efficiency. To overcome these challenges, we propose a robust two-stage fuzzy approach called FuzzyLight, which integrates compressed sensing and RL for TSC deployment. FuzzyLight offers several key contributions: (1) It employs fuzzy logic and compressed sensing to address sensor noise and enhances the efficiency of TSP decisions. (2) It maintains stable performance during training and combines fuzzy logic with RL to generate precise phases. (3) It works in real cities across 22 intersections and demonstrates superior performance in both real-world and simulated environments. Experimental results indicate that FuzzyLight enhances traffic efficiency by 48% compared to expert-designed timings in the real world. Furthermore, it achieves state-of-the-art (SOTA) performance in simulated environments using six real-world datasets with transmission noise. The code and deployment video are available at the URL1