Middle Tennessee State University
Abstract:Adenoid hypertrophy stands as a common cause of obstructive sleep apnea-hypopnea syndrome in children. It is characterized by snoring, nasal congestion, and growth disorders. Computed Tomography (CT) emerges as a pivotal medical imaging modality, utilizing X-rays and advanced computational techniques to generate detailed cross-sectional images. Within the realm of pediatric airway assessments, CT imaging provides an insightful perspective on the shape and volume of enlarged adenoids. Despite the advances of deep learning methods for medical imaging analysis, there remains an emptiness in the segmentation of adenoid hypertrophy in CT scans. To address this research gap, we introduce TSUBF-Nett (Trans-Spatial UNet-like Network based on Bi-direction Fusion), a 3D medical image segmentation framework. TSUBF-Net is engineered to effectively discern intricate 3D spatial interlayer features in CT scans and enhance the extraction of boundary-blurring features. Notably, we propose two innovative modules within the U-shaped network architecture:the Trans-Spatial Perception module (TSP) and the Bi-directional Sampling Collaborated Fusion module (BSCF).These two modules are in charge of operating during the sampling process and strategically fusing down-sampled and up-sampled features, respectively. Furthermore, we introduce the Sobel loss term, which optimizes the smoothness of the segmentation results and enhances model accuracy. Extensive 3D segmentation experiments are conducted on several datasets. TSUBF-Net is superior to the state-of-the-art methods with the lowest HD95: 7.03, IoU:85.63, and DSC: 92.26 on our own AHSD dataset. The results in the other two public datasets also demonstrate that our methods can robustly and effectively address the challenges of 3D segmentation in CT scans.
Abstract:It is widely agreed that open-vocabulary-based approaches outperform classical closed-set training solutions for recognizing unseen objects in images for semantic segmentation. Existing open-vocabulary approaches leverage vision-language models, such as CLIP, to align visual features with rich semantic features acquired through pre-training on large-scale vision-language datasets. However, the text prompts employed in these methods are short phrases based on fixed templates, failing to capture comprehensive object attributes. Moreover, while the CLIP model excels at exploiting image-level features, it is less effective at pixel-level representation, which is crucial for semantic segmentation tasks. In this work, we propose to alleviate the above-mentioned issues by leveraging multiple large-scale models to enhance the alignment between fine-grained visual features and enriched linguistic features. Specifically, our method employs large language models (LLMs) to generate enriched language prompts with diverse visual attributes for each category, including color, shape/size, and texture/material. Additionally, for enhanced visual feature extraction, the SAM model is adopted as a supplement to the CLIP visual encoder through a proposed learnable weighted fusion strategy. Built upon these techniques, our method, termed LMSeg, achieves state-of-the-art performance across all major open-vocabulary segmentation benchmarks. The code will be made available soon.
Abstract:Time series analysis finds wide applications in fields such as weather forecasting, anomaly detection, and behavior recognition. Previous methods attempted to model temporal variations directly using 1D time series. However, this has been quite challenging due to the discrete nature of data points in time series and the complexity of periodic variation. In terms of periodicity, taking weather and traffic data as an example, there are multi-periodic variations such as yearly, monthly, weekly, and daily, etc. In order to break through the limitations of the previous methods, we decouple the implied complex periodic variations into inclusion and overlap relationships among different level periodic components based on the observation of the multi-periodicity therein and its inclusion relationships. This explicitly represents the naturally occurring pyramid-like properties in time series, where the top level is the original time series and lower levels consist of periodic components with gradually shorter periods, which we call the periodic pyramid. To further extract complex temporal variations, we introduce self-attention mechanism into the periodic pyramid, capturing complex periodic relationships by computing attention between periodic components based on their inclusion, overlap, and adjacency relationships. Our proposed Peri-midFormer demonstrates outstanding performance in five mainstream time series analysis tasks, including short- and long-term forecasting, imputation, classification, and anomaly detection.
Abstract:Incremental Few-Shot Semantic Segmentation (iFSS) tackles a task that requires a model to continually expand its segmentation capability on novel classes using only a few annotated examples. Typical incremental approaches encounter a challenge that the objective of the base training phase (fitting base classes with sufficient instances) does not align with the incremental learning phase (rapidly adapting to new classes with less forgetting). This disconnect can result in suboptimal performance in the incremental setting. This study introduces a meta-learning-based prototype approach that encourages the model to learn how to adapt quickly while preserving previous knowledge. Concretely, we mimic the incremental evaluation protocol during the base training session by sampling a sequence of pseudo-incremental tasks. Each task in the simulated sequence is trained using a meta-objective to enable rapid adaptation without forgetting. To enhance discrimination among class prototypes, we introduce prototype space redistribution learning, which dynamically updates class prototypes to establish optimal inter-prototype boundaries within the prototype space. Extensive experiments on iFSS datasets built upon PASCAL and COCO benchmarks show the advanced performance of the proposed approach, offering valuable insights for addressing iFSS challenges.
Abstract:Cross-domain recommendation (CDR) aims to improve recommendation accuracy in sparse domains by transferring knowledge from data-rich domains. However, existing CDR methods often assume the availability of user-item interaction data across domains, overlooking user privacy concerns. Furthermore, these methods suffer from performance degradation in scenarios with sparse overlapping users, as they typically depend on a large number of fully shared users for effective knowledge transfer. To address these challenges, we propose a Federated Prototype-based Contrastive Learning (CL) method for Privacy-Preserving CDR, named FedPCL-CDR. This approach utilizes non-overlapping user information and prototypes to improve multi-domain performance while protecting user privacy. FedPCL-CDR comprises two modules: local domain (client) learning and global server aggregation. In the local domain, FedPCL-CDR clusters all user data to learn representative prototypes, effectively utilizing non-overlapping user information and addressing the sparse overlapping user issue. It then facilitates knowledge transfer by employing both local and global prototypes returned from the server in a CL manner. Simultaneously, the global server aggregates representative prototypes from local domains to learn both local and global prototypes. The combination of prototypes and federated learning (FL) ensures that sensitive user data remains decentralized, with only prototypes being shared across domains, thereby protecting user privacy. Extensive experiments on four CDR tasks using two real-world datasets demonstrate that FedPCL-CDR outperforms the state-of-the-art baselines.
Abstract:Large language models (LLMs) and retrieval-augmented generation (RAG) techniques have revolutionized traditional information access, enabling AI agent to search and summarize information on behalf of users during dynamic dialogues. Despite their potential, current AI search engines exhibit considerable room for improvement in several critical areas. These areas include the support for multimodal information, the delivery of personalized responses, the capability to logically answer complex questions, and the facilitation of more flexible interactions. This paper proposes a novel AI Search Engine framework called the Agent Collaboration Network (ACN). The ACN framework consists of multiple specialized agents working collaboratively, each with distinct roles such as Account Manager, Solution Strategist, Information Manager, and Content Creator. This framework integrates mechanisms for picture content understanding, user profile tracking, and online evolution, enhancing the AI search engine's response quality, personalization, and interactivity. A highlight of the ACN is the introduction of a Reflective Forward Optimization method (RFO), which supports the online synergistic adjustment among agents. This feature endows the ACN with online learning capabilities, ensuring that the system has strong interactive flexibility and can promptly adapt to user feedback. This learning method may also serve as an optimization approach for agent-based systems, potentially influencing other domains of agent applications.
Abstract:Cross-domain recommendation (CDR) aims to address the data-sparsity problem by transferring knowledge across domains. Existing CDR methods generally assume that the user-item interaction data is shareable between domains, which leads to privacy leakage. Recently, some privacy-preserving CDR (PPCDR) models have been proposed to solve this problem. However, they primarily transfer simple representations learned only from user-item interaction histories, overlooking other useful side information, leading to inaccurate user preferences. Additionally, they transfer differentially private user-item interaction matrices or embeddings across domains to protect privacy. However, these methods offer limited privacy protection, as attackers may exploit external information to infer the original data. To address these challenges, we propose a novel Federated User Preference Modeling (FUPM) framework. In FUPM, first, a novel comprehensive preference exploration module is proposed to learn users' comprehensive preferences from both interaction data and additional data including review texts and potentially positive items. Next, a private preference transfer module is designed to first learn differentially private local and global prototypes, and then privately transfer the global prototypes using a federated learning strategy. These prototypes are generalized representations of user groups, making it difficult for attackers to infer individual information. Extensive experiments on four CDR tasks conducted on the Amazon and Douban datasets validate the superiority of FUPM over SOTA baselines. Code is available at https://github.com/Lili1013/FUPM.
Abstract:Modeling feature interactions is crucial for click-through rate (CTR) prediction, particularly when it comes to high-order explicit interactions. Traditional methods struggle with this task because they often predefine a maximum interaction order, which relies heavily on prior knowledge and can limit the model's effectiveness. Additionally, modeling high-order interactions typically leads to increased computational costs. Therefore, the challenge lies in adaptively modeling high-order feature interactions while maintaining efficiency. To address this issue, we introduce Kolmogorov-Arnold Represented Sparse Efficient Interaction Network (KarSein), designed to optimize both predictive accuracy and computational efficiency. We firstly identify limitations of directly applying Kolmogorov-Arnold Networks (KAN) to CTR and then introduce KarSein to overcome these issues. It features a novel architecture that reduces the computational costs of KAN and supports embedding vectors as feature inputs. Additionally, KarSein employs guided symbolic regression to address the challenge of KAN in spontaneously learning multiplicative relationships. Extensive experiments demonstrate KarSein's superior performance, achieving significant predictive accuracy with minimal computational overhead. Furthermore, KarSein maintains strong global explainability while enabling the removal of redundant features, resulting in a sparse network structure. These advantages also position KarSein as a promising method for efficient inference.
Abstract:This paper proposes a weight-aware deep reinforcement learning (WADRL) approach designed to address the multiobjective vehicle routing problem with time windows (MOVRPTW), aiming to use a single deep reinforcement learning (DRL) model to solve the entire multiobjective optimization problem. The Non-dominated sorting genetic algorithm-II (NSGA-II) method is then employed to optimize the outcomes produced by the WADRL, thereby mitigating the limitations of both approaches. Firstly, we design an MOVRPTW model to balance the minimization of travel cost and the maximization of customer satisfaction. Subsequently, we present a novel DRL framework that incorporates a transformer-based policy network. This network is composed of an encoder module, a weight embedding module where the weights of the objective functions are incorporated, and a decoder module. NSGA-II is then utilized to optimize the solutions generated by WADRL. Finally, extensive experimental results demonstrate that our method outperforms the existing and traditional methods. Due to the numerous constraints in VRPTW, generating initial solutions of the NSGA-II algorithm can be time-consuming. However, using solutions generated by the WADRL as initial solutions for NSGA-II significantly reduces the time required for generating initial solutions. Meanwhile, the NSGA-II algorithm can enhance the quality of solutions generated by WADRL, resulting in solutions with better scalability. Notably, the weight-aware strategy significantly reduces the training time of DRL while achieving better results, enabling a single DRL model to solve the entire multiobjective optimization problem.
Abstract:Retrieval-augmented generation (RAG) techniques leverage the in-context learning capabilities of large language models (LLMs) to produce more accurate and relevant responses. Originating from the simple 'retrieve-then-read' approach, the RAG framework has evolved into a highly flexible and modular paradigm. A critical component, the Query Rewriter module, enhances knowledge retrieval by generating a search-friendly query. This method aligns input questions more closely with the knowledge base. Our research identifies opportunities to enhance the Query Rewriter module to Query Rewriter+ by generating multiple queries to overcome the Information Plateaus associated with a single query and by rewriting questions to eliminate Ambiguity, thereby clarifying the underlying intent. We also find that current RAG systems exhibit issues with Irrelevant Knowledge; to overcome this, we propose the Knowledge Filter. These two modules are both based on the instruction-tuned Gemma-2B model, which together enhance response quality. The final identified issue is Redundant Retrieval; we introduce the Memory Knowledge Reservoir and the Retriever Trigger to solve this. The former supports the dynamic expansion of the RAG system's knowledge base in a parameter-free manner, while the latter optimizes the cost for accessing external knowledge, thereby improving resource utilization and response efficiency. These four RAG modules synergistically improve the response quality and efficiency of the RAG system. The effectiveness of these modules has been validated through experiments and ablation studies across six common QA datasets. The source code can be accessed at https://github.com/Ancientshi/ERM4.