Abstract:Adenoid hypertrophy stands as a common cause of obstructive sleep apnea-hypopnea syndrome in children. It is characterized by snoring, nasal congestion, and growth disorders. Computed Tomography (CT) emerges as a pivotal medical imaging modality, utilizing X-rays and advanced computational techniques to generate detailed cross-sectional images. Within the realm of pediatric airway assessments, CT imaging provides an insightful perspective on the shape and volume of enlarged adenoids. Despite the advances of deep learning methods for medical imaging analysis, there remains an emptiness in the segmentation of adenoid hypertrophy in CT scans. To address this research gap, we introduce TSUBF-Nett (Trans-Spatial UNet-like Network based on Bi-direction Fusion), a 3D medical image segmentation framework. TSUBF-Net is engineered to effectively discern intricate 3D spatial interlayer features in CT scans and enhance the extraction of boundary-blurring features. Notably, we propose two innovative modules within the U-shaped network architecture:the Trans-Spatial Perception module (TSP) and the Bi-directional Sampling Collaborated Fusion module (BSCF).These two modules are in charge of operating during the sampling process and strategically fusing down-sampled and up-sampled features, respectively. Furthermore, we introduce the Sobel loss term, which optimizes the smoothness of the segmentation results and enhances model accuracy. Extensive 3D segmentation experiments are conducted on several datasets. TSUBF-Net is superior to the state-of-the-art methods with the lowest HD95: 7.03, IoU:85.63, and DSC: 92.26 on our own AHSD dataset. The results in the other two public datasets also demonstrate that our methods can robustly and effectively address the challenges of 3D segmentation in CT scans.
Abstract:Robot-assisted Endoscopic Submucosal Dissection (ESD) improves the surgical procedure by providing a more comprehensive view through advanced robotic instruments and bimanual operation, thereby enhancing dissection efficiency and accuracy. Accurate prediction of dissection trajectories is crucial for better decision-making, reducing intraoperative errors, and improving surgical training. Nevertheless, predicting these trajectories is challenging due to variable tumor margins and dynamic visual conditions. To address this issue, we create the ESD Trajectory and Confidence Map-based Safety Margin (ETSM) dataset with $1849$ short clips, focusing on submucosal dissection with a dual-arm robotic system. We also introduce a framework that combines optimal dissection trajectory prediction with a confidence map-based safety margin, providing a more secure and intelligent decision-making tool to minimize surgical risks for ESD procedures. Additionally, we propose the Regression-based Confidence Map Prediction Network (RCMNet), which utilizes a regression approach to predict confidence maps for dissection areas, thereby delineating various levels of safety margins. We evaluate our RCMNet using three distinct experimental setups: in-domain evaluation, robustness assessment, and out-of-domain evaluation. Experimental results show that our approach excels in the confidence map-based safety margin prediction task, achieving a mean absolute error (MAE) of only $3.18$. To the best of our knowledge, this is the first study to apply a regression approach for visual guidance concerning delineating varying safety levels of dissection areas. Our approach bridges gaps in current research by improving prediction accuracy and enhancing the safety of the dissection process, showing great clinical significance in practice.
Abstract:Purpose: Endoscopic surgical environments present challenges for dissection zone segmentation due to unclear boundaries between tissue types, leading to segmentation errors where models misidentify or overlook edges. This study aims to provide precise dissection zone suggestions during endoscopic submucosal dissection (ESD) procedures, enhancing ESD safety. Methods: We propose the Prompted-based Dissection Zone Segmentation (PDZSeg) model, designed to leverage diverse visual prompts such as scribbles and bounding boxes. By overlaying these prompts onto images and fine-tuning a foundational model on a specialized dataset, our approach improves segmentation performance and user experience through flexible input methods. Results: The PDZSeg model was validated using three experimental setups: in-domain evaluation, variability in visual prompt availability, and robustness assessment. Using the ESD-DZSeg dataset, results show that our method outperforms state-of-the-art segmentation approaches. This is the first study to integrate visual prompt design into dissection zone segmentation. Conclusion: The PDZSeg model effectively utilizes visual prompts to enhance segmentation performance and user experience, supported by the novel ESD-DZSeg dataset as a benchmark for dissection zone segmentation in ESD. Our work establishes a foundation for future research.
Abstract:submucosal dissection (ESD) enables rapid resection of large lesions, minimizing recurrence rates and improving long-term overall survival. Despite these advantages, ESD is technically challenging and carries high risks of complications, necessitating skilled surgeons and precise instruments. Recent advancements in Large Visual-Language Models (LVLMs) offer promising decision support and predictive planning capabilities for robotic systems, which can augment the accuracy of ESD and reduce procedural risks. However, existing datasets for multi-level fine-grained ESD surgical motion understanding are scarce and lack detailed annotations. In this paper, we design a hierarchical decomposition of ESD motion granularity and introduce a multi-level surgical motion dataset (CoPESD) for training LVLMs as the robotic \textbf{Co}-\textbf{P}ilot of \textbf{E}ndoscopic \textbf{S}ubmucosal \textbf{D}issection. CoPESD includes 17,679 images with 32,699 bounding boxes and 88,395 multi-level motions, from over 35 hours of ESD videos for both robot-assisted and conventional surgeries. CoPESD enables granular analysis of ESD motions, focusing on the complex task of submucosal dissection. Extensive experiments on the LVLMs demonstrate the effectiveness of CoPESD in training LVLMs to predict following surgical robotic motions. As the first multimodal ESD motion dataset, CoPESD supports advanced research in ESD instruction-following and surgical automation. The dataset is available at \href{https://github.com/gkw0010/CoPESD}{https://github.com/gkw0010/CoPESD.}}
Abstract:Medical visual question answering (VQA) bridges the gap between visual information and clinical decision-making, enabling doctors to extract understanding from clinical images and videos. In particular, surgical VQA can enhance the interpretation of surgical data, aiding in accurate diagnoses, effective education, and clinical interventions. However, the inability of VQA models to visually indicate the regions of interest corresponding to the given questions results in incomplete comprehension of the surgical scene. To tackle this, we propose the surgical visual question localized-answering (VQLA) for precise and context-aware responses to specific queries regarding surgical images. Furthermore, to address the strong demand for safety in surgical scenarios and potential corruptions in image acquisition and transmission, we propose a novel approach called Calibrated Co-Attention Gated Vision-Language (C$^2$G-ViL) embedding to integrate and align multimodal information effectively. Additionally, we leverage the adversarial sample-based contrastive learning strategy to boost our performance and robustness. We also extend our EndoVis-18-VQLA and EndoVis-17-VQLA datasets to broaden the scope and application of our data. Extensive experiments on the aforementioned datasets demonstrate the remarkable performance and robustness of our solution. Our solution can effectively combat real-world image corruption. Thus, our proposed approach can serve as an effective tool for assisting surgical education, patient care, and enhancing surgical outcomes.
Abstract:The precise tracking and segmentation of surgical instruments have led to a remarkable enhancement in the efficiency of surgical procedures. However, the challenge lies in achieving accurate segmentation of surgical instruments while minimizing the need for manual annotation and reducing the time required for the segmentation process. To tackle this, we propose a novel framework for surgical instrument segmentation and tracking. Specifically, with a tiny subset of frames for segmentation, we ensure accurate segmentation across the entire surgical video. Our method adopts a two-stage approach to efficiently segment videos. Initially, we utilize the Segment-Anything (SAM) model, which has been fine-tuned using the Low-Rank Adaptation (LoRA) on the EndoVis17 Dataset. The fine-tuned SAM model is applied to segment the initial frames of the video accurately. Subsequently, we deploy the XMem++ tracking algorithm to follow the annotated frames, thereby facilitating the segmentation of the entire video sequence. This workflow enables us to precisely segment and track objects within the video. Through extensive evaluation of the in-distribution dataset (EndoVis17) and the out-of-distribution datasets (EndoVis18 \& the endoscopic submucosal dissection surgery (ESD) dataset), our framework demonstrates exceptional accuracy and robustness, thus showcasing its potential to advance the automated robotic-assisted surgery.
Abstract:Wireless capsule endoscopy (WCE) is a non-invasive diagnostic procedure that enables visualization of the gastrointestinal (GI) tract. Deep learning-based methods have shown effectiveness in disease screening using WCE data, alleviating the burden on healthcare professionals. However, existing capsule endoscopy classification methods mostly rely on pre-defined categories, making it challenging to identify and classify out-of-distribution (OOD) data, such as undefined categories or anatomical landmarks. To address this issue, we propose the Endoscopy Out-of-Distribution (EndoOOD) framework, which aims to effectively handle the OOD detection challenge in WCE diagnosis. The proposed framework focuses on improving the robustness and reliability of WCE diagnostic capabilities by incorporating uncertainty-aware mixup training and long-tailed in-distribution (ID) data calibration techniques. Additionally, virtual-logit matching is employed to accurately distinguish between OOD and ID data while minimizing information loss. To assess the performance of our proposed solution, we conduct evaluations and comparisons with 12 state-of-the-art (SOTA) methods using two publicly available datasets. The results demonstrate the effectiveness of the proposed framework in enhancing diagnostic accuracy and supporting clinical decision-making.
Abstract:In the realm of automated robotic surgery and computer-assisted interventions, understanding robotic surgical activities stands paramount. Existing algorithms dedicated to surgical activity recognition predominantly cater to pre-defined closed-set paradigms, ignoring the challenges of real-world open-set scenarios. Such algorithms often falter in the presence of test samples originating from classes unseen during training phases. To tackle this problem, we introduce an innovative Open-Set Surgical Activity Recognition (OSSAR) framework. Our solution leverages the hyperspherical reciprocal point strategy to enhance the distinction between known and unknown classes in the feature space. Additionally, we address the issue of over-confidence in the closed set by refining model calibration, avoiding misclassification of unknown classes as known ones. To support our assertions, we establish an open-set surgical activity benchmark utilizing the public JIGSAWS dataset. Besides, we also collect a novel dataset on endoscopic submucosal dissection for surgical activity tasks. Extensive comparisons and ablation experiments on these datasets demonstrate the significant outperformance of our method over existing state-of-the-art approaches. Our proposed solution can effectively address the challenges of real-world surgical scenarios. Our code is publicly accessible at https://github.com/longbai1006/OSSAR.
Abstract:Head detection provides distribution information of pedestrian, which is crucial for scene statistical analysis, traffic management, and risk assessment and early warning. However, scene complexity and large-scale variation in the real world make accurate detection more difficult. Therefore, we present a modified Yolov8 which improves head detection performance through reinforcing target perception. An Auxiliary Learning Feature Fusion (ALFF) module comprised of LSTM and convolutional blocks is used as the auxiliary task to help the model perceive targets. In addition, we introduce Noise Calibration into Distribution Focal Loss to facilitate model fitting and improve the accuracy of detection. Considering the requirements of high accuracy and speed for the head detection task, our method is adapted with two kinds of backbone, namely Yolov8n and Yolov8m. The results demonstrate the superior performance of our approach in improving detection accuracy and robustness.
Abstract:Endoscopy is a widely used technique for the early detection of diseases or robotic-assisted minimally invasive surgery (RMIS). Numerous deep learning (DL)-based research works have been developed for automated diagnosis or processing of endoscopic view. However, existing DL models may suffer from catastrophic forgetting. When new target classes are introduced over time or cross institutions, the performance of old classes may suffer severe degradation. More seriously, data privacy and storage issues may lead to the unavailability of old data when updating the model. Therefore, it is necessary to develop a continual learning (CL) methodology to solve the problem of catastrophic forgetting in endoscopic image segmentation. To tackle this, we propose a Endoscopy Continual Semantic Segmentation (EndoCSS) framework that does not involve the storage and privacy issues of exemplar data. The framework includes a mini-batch pseudo-replay (MB-PR) mechanism and a self-adaptive noisy cross-entropy (SAN-CE) loss. The MB-PR strategy circumvents privacy and storage issues by generating pseudo-replay images through a generative model. Meanwhile, the MB-PR strategy can also correct the model deviation to the replay data and current training data, which is aroused by the significant difference in the amount of current and replay images. Therefore, the model can perform effective representation learning on both new and old tasks. SAN-CE loss can help model fitting by adjusting the model's output logits, and also improve the robustness of training. Extensive continual semantic segmentation (CSS) experiments on public datasets demonstrate that our method can robustly and effectively address the catastrophic forgetting brought by class increment in endoscopy scenes. The results show that our framework holds excellent potential for real-world deployment in a streaming learning manner.