Abstract:We consider stochastic convex optimization for heavy-tailed data with the guarantee of being differentially private (DP). Prior work on this problem is restricted to the gradient descent (GD) method, which is inefficient for large-scale problems. In this paper, we resolve this issue and derive the first high-probability bounds for private stochastic method with clipping. For general convex problems, we derive excess population risks $\Tilde{O}\left(\frac{d^{1/7}\sqrt{\ln\frac{(n \epsilon)^2}{\beta d}}}{(n\epsilon)^{2/7}}\right)$ and $\Tilde{O}\left(\frac{d^{1/7}\ln\frac{(n\epsilon)^2}{\beta d}}{(n\epsilon)^{2/7}}\right)$ under bounded or unbounded domain assumption, respectively (here $n$ is the sample size, $d$ is the dimension of the data, $\beta$ is the confidence level and $\epsilon$ is the private level). Then, we extend our analysis to the strongly convex case and non-smooth case (which works for generalized smooth objectives with H$\ddot{\text{o}}$lder-continuous gradients). We establish new excess risk bounds without bounded domain assumption. The results above achieve lower excess risks and gradient complexities than existing methods in their corresponding cases. Numerical experiments are conducted to justify the theoretical improvement.
Abstract:Stochastic variance reduced methods have shown strong performance in solving finite-sum problems. However, these methods usually require the users to manually tune the step-size, which is time-consuming or even infeasible for some large-scale optimization tasks. To overcome the problem, we propose and analyze several novel adaptive variants of the popular SAGA algorithm. Eventually, we design a variant of Barzilai-Borwein step-size which is tailored for the incremental gradient method to ensure memory efficiency and fast convergence. We establish its convergence guarantees under general settings that allow non-Euclidean norms in the definition of smoothness and the composite objectives, which cover a broad range of applications in machine learning. We improve the analysis of SAGA to support non-Euclidean norms, which fills the void of existing work. Numerical experiments on standard datasets demonstrate a competitive performance of the proposed algorithm compared with existing variance-reduced methods and their adaptive variants.