Abstract:Domain Adaptive Object Detection (DAOD) transfers knowledge from a labeled source domain to an unannotated target domain under closed-set assumption. Universal DAOD (UniDAOD) extends DAOD to handle open-set, partial-set, and closed-set domain adaptation. In this paper, we first unveil two issues: domain-private category alignment is crucial for global-level features, and the domain probability heterogeneity of features across different levels. To address these issues, we propose a novel Dual Probabilistic Alignment (DPA) framework to model domain probability as Gaussian distribution, enabling the heterogeneity domain distribution sampling and measurement. The DPA consists of three tailored modules: the Global-level Domain Private Alignment (GDPA), the Instance-level Domain Shared Alignment (IDSA), and the Private Class Constraint (PCC). GDPA utilizes the global-level sampling to mine domain-private category samples and calculate alignment weight through a cumulative distribution function to address the global-level private category alignment. IDSA utilizes instance-level sampling to mine domain-shared category samples and calculates alignment weight through Gaussian distribution to conduct the domain-shared category domain alignment to address the feature heterogeneity. The PCC aggregates domain-private category centroids between feature and probability spaces to mitigate negative transfer. Extensive experiments demonstrate that our DPA outperforms state-of-the-art UniDAOD and DAOD methods across various datasets and scenarios, including open, partial, and closed sets. Codes are available at \url{https://github.com/zyfone/DPA}.
Abstract:Surgical interventions, particularly in neurology, represent complex and high-stakes scenarios that impose substantial cognitive burdens on surgical teams. Although deliberate education and practice can enhance cognitive capabilities, surgical training opportunities remain limited due to patient safety concerns. To address these cognitive challenges in surgical training and operation, we propose SurgBox, an agent-driven sandbox framework to systematically enhance the cognitive capabilities of surgeons in immersive surgical simulations. Specifically, our SurgBox leverages large language models (LLMs) with tailored Retrieval-Augmented Generation (RAG) to authentically replicate various surgical roles, enabling realistic training environments for deliberate practice. In particular, we devise Surgery Copilot, an AI-driven assistant to actively coordinate the surgical information stream and support clinical decision-making, thereby diminishing the cognitive workload of surgical teams during surgery. By incorporating a novel Long-Short Memory mechanism, our Surgery Copilot can effectively balance immediate procedural assistance with comprehensive surgical knowledge. Extensive experiments using real neurosurgical procedure records validate our SurgBox framework in both enhancing surgical cognitive capabilities and supporting clinical decision-making. By providing an integrated solution for training and operational support to address cognitive challenges, our SurgBox framework advances surgical education and practice, potentially transforming surgical outcomes and healthcare quality. The code is available at https://github.com/franciszchen/SurgBox.
Abstract:While text-to-image generation has been extensively studied, generating images from scene graphs remains relatively underexplored, primarily due to challenges in accurately modeling spatial relationships and object interactions. To fill this gap, we introduce Scene-Bench, a comprehensive benchmark designed to evaluate and enhance the factual consistency in generating natural scenes. Scene-Bench comprises MegaSG, a large-scale dataset of one million images annotated with scene graphs, facilitating the training and fair comparison of models across diverse and complex scenes. Additionally, we propose SGScore, a novel evaluation metric that leverages chain-of-thought reasoning capabilities of multimodal large language models (LLMs) to assess both object presence and relationship accuracy, offering a more effective measure of factual consistency than traditional metrics like FID and CLIPScore. Building upon this evaluation framework, we develop a scene graph feedback pipeline that iteratively refines generated images by identifying and correcting discrepancies between the scene graph and the image. Extensive experiments demonstrate that Scene-Bench provides a more comprehensive and effective evaluation framework compared to existing benchmarks, particularly for complex scene generation. Furthermore, our feedback strategy significantly enhances the factual consistency of image generation models, advancing the field of controllable image generation.
Abstract:Dimensionality reduction (DR) plays a crucial role in various fields, including data engineering and visualization, by simplifying complex datasets while retaining essential information. However, the challenge of balancing DR accuracy and interpretability remains crucial, particularly for users dealing with high-dimensional data. Traditional DR methods often face a trade-off between precision and transparency, where optimizing for performance can lead to reduced interpretability, and vice versa. This limitation is especially prominent in real-world applications such as image, tabular, and text data analysis, where both accuracy and interpretability are critical. To address these challenges, this work introduces the MOE-based Hyperbolic Interpretable Deep Manifold Transformation (DMT-HI). The proposed approach combines hyperbolic embeddings, which effectively capture complex hierarchical structures, with Mixture of Experts (MOE) models, which dynamically allocate tasks based on input features. DMT-HI enhances DR accuracy by leveraging hyperbolic embeddings to represent the hierarchical nature of data, while also improving interpretability by explicitly linking input data, embedding outcomes, and key features through the MOE structure. Extensive experiments demonstrate that DMT-HI consistently achieves superior performance in both DR accuracy and model interpretability, making it a robust solution for complex data analysis. The code is available at \url{https://github.com/zangzelin/code_dmthi}.
Abstract:Accurate and complete segmentation of airways in chest CT images is essential for the quantitative assessment of lung diseases and the facilitation of pulmonary interventional procedures. Although deep learning has led to significant advancements in medical image segmentation, maintaining airway continuity remains particularly challenging. This difficulty arises primarily from the small and dispersed nature of airway structures, as well as class imbalance in CT scans. To address these challenges, we designed a Multi-scale Nested Residual U-Net (MNR-UNet), incorporating multi-scale inputs and Residual Multi-scale Modules (RMM) into a nested residual framework to enhance information flow, effectively capturing the intricate details of small airways and mitigating gradient vanishing. Building on this, we developed a three-stage segmentation pipeline to optimize the training of the MNR-UNet. The first two stages prioritize high accuracy and sensitivity, while the third stage focuses on repairing airway breakages to balance topological completeness and correctness. To further address class imbalance, we introduced a weighted Breakage-Aware Loss (wBAL) to heighten focus on challenging samples, penalizing breakages and thereby extending the length of the airway tree. Additionally, we proposed a hierarchical evaluation framework to offer more clinically meaningful analysis. Validation on both in-house and public datasets demonstrates that our approach achieves superior performance in detecting more accurate airway voxels and identifying additional branches, significantly improving airway topological completeness. The code will be released publicly following the publication of the paper.
Abstract:Biological tree analysis serves as a pivotal tool in uncovering the evolutionary and differentiation relationships among organisms, genes, and cells. Its applications span diverse fields including phylogenetics, developmental biology, ecology, and medicine. Traditional tree inference methods, while foundational in early studies, face increasing limitations in processing the large-scale, complex datasets generated by modern high-throughput technologies. Recent advances in deep learning offer promising solutions, providing enhanced data processing and pattern recognition capabilities. However, challenges remain, particularly in accurately representing the inherently discrete and non-Euclidean nature of biological trees. In this review, we first outline the key biological priors fundamental to phylogenetic and differentiation tree analyses, facilitating a deeper interdisciplinary understanding between deep learning researchers and biologists. We then systematically examine the commonly used data formats and databases, serving as a comprehensive resource for model testing and development. We provide a critical analysis of traditional tree generation methods, exploring their underlying biological assumptions, technical characteristics, and limitations. Current developments in deep learning-based tree generation are reviewed, highlighting both recent advancements and existing challenges. Furthermore, we discuss the diverse applications of biological trees across various biological domains. Finally, we propose potential future directions and trends in leveraging deep learning for biological tree research, aiming to guide further exploration and innovation in this field.
Abstract:Vision-based surgical navigation has received increasing attention due to its non-invasive, cost-effective, and flexible advantages. In particular, a critical element of the vision-based navigation system is tracking surgical instruments. Compared with 2D instrument tracking methods, 3D instrument tracking has broader value in clinical practice, but is also more challenging due to weak texture, occlusion, and lack of Computer-Aided Design (CAD) models for 3D registration. To solve these challenges, we propose the SurgTrack, a two-stage 3D instrument tracking method for CAD-free and robust real-world applications. In the first registration stage, we incorporate an Instrument Signed Distance Field (SDF) modeling the 3D representation of instruments, achieving CAD-freed 3D registration. Due to this, we can obtain the location and orientation of instruments in the 3D space by matching the video stream with the registered SDF model. In the second tracking stage, we devise a posture graph optimization module, leveraging the historical tracking results of the posture memory pool to optimize the tracking results and improve the occlusion robustness. Furthermore, we collect the Instrument3D dataset to comprehensively evaluate the 3D tracking of surgical instruments. The extensive experiments validate the superiority and scalability of our SurgTrack, by outperforming the state-of-the-arts with a remarkable improvement. The code and dataset are available at https://github.com/wenwucode/SurgTrack.
Abstract:The field of computer vision applied to videos of minimally invasive surgery is ever-growing. Workflow recognition pertains to the automated recognition of various aspects of a surgery: including which surgical steps are performed; and which surgical instruments are used. This information can later be used to assist clinicians when learning the surgery; during live surgery; and when writing operation notes. The Pituitary Vision (PitVis) 2023 Challenge tasks the community to step and instrument recognition in videos of endoscopic pituitary surgery. This is a unique task when compared to other minimally invasive surgeries due to the smaller working space, which limits and distorts vision; and higher frequency of instrument and step switching, which requires more precise model predictions. Participants were provided with 25-videos, with results presented at the MICCAI-2023 conference as part of the Endoscopic Vision 2023 Challenge in Vancouver, Canada, on 08-Oct-2023. There were 18-submissions from 9-teams across 6-countries, using a variety of deep learning models. A commonality between the top performing models was incorporating spatio-temporal and multi-task methods, with greater than 50% and 10% macro-F1-score improvement over purely spacial single-task models in step and instrument recognition respectively. The PitVis-2023 Challenge therefore demonstrates state-of-the-art computer vision models in minimally invasive surgery are transferable to a new dataset, with surgery specific techniques used to enhance performance, progressing the field further. Benchmark results are provided in the paper, and the dataset is publicly available at: https://doi.org/10.5522/04/26531686.
Abstract:Surgical instrument segmentation is crucial in surgical scene understanding, thereby facilitating surgical safety. Existing algorithms directly detected all instruments of pre-defined categories in the input image, lacking the capability to segment specific instruments according to the surgeon's intention. During different stages of surgery, surgeons exhibit varying preferences and focus toward different surgical instruments. Therefore, an instrument segmentation algorithm that adheres to the surgeon's intention can minimize distractions from irrelevant instruments and assist surgeons to a great extent. The recent Segment Anything Model (SAM) reveals the capability to segment objects following prompts, but the manual annotations for prompts are impractical during the surgery. To address these limitations in operating rooms, we propose an audio-driven surgical instrument segmentation framework, named ASI-Seg, to accurately segment the required surgical instruments by parsing the audio commands of surgeons. Specifically, we propose an intention-oriented multimodal fusion to interpret the segmentation intention from audio commands and retrieve relevant instrument details to facilitate segmentation. Moreover, to guide our ASI-Seg segment of the required surgical instruments, we devise a contrastive learning prompt encoder to effectively distinguish the required instruments from the irrelevant ones. Therefore, our ASI-Seg promotes the workflow in the operating rooms, thereby providing targeted support and reducing the cognitive load on surgeons. Extensive experiments are performed to validate the ASI-Seg framework, which reveals remarkable advantages over classical state-of-the-art and medical SAMs in both semantic segmentation and intention-oriented segmentation. The source code is available at https://github.com/Zonmgin-Zhang/ASI-Seg.
Abstract:Sequential decision-making refers to algorithms that take into account the dynamics of the environment, where early decisions affect subsequent decisions. With large language models (LLMs) demonstrating powerful capabilities between tasks, we can't help but ask: Can Current LLMs Effectively Make Sequential Decisions? In order to answer this question, we propose the UNO Arena based on the card game UNO to evaluate the sequential decision-making capability of LLMs and explain in detail why we choose UNO. In UNO Arena, We evaluate the sequential decision-making capability of LLMs dynamically with novel metrics based Monte Carlo methods. We set up random players, DQN-based reinforcement learning players, and LLM players (e.g. GPT-4, Gemini-pro) for comparison testing. Furthermore, in order to improve the sequential decision-making capability of LLMs, we propose the TUTRI player, which can involves having LLMs reflect their own actions wtih the summary of game history and the game strategy. Numerous experiments demonstrate that the TUTRI player achieves a notable breakthrough in the performance of sequential decision-making compared to the vanilla LLM player.