Abstract:Learning scene graphs from natural language descriptions has proven to be a cheap and promising scheme for Scene Graph Generation (SGG). However, such unstructured caption data and its processing are troubling the learning an acurrate and complete scene graph. This dilema can be summarized as three points. First, traditional language parsers often fail to extract meaningful relationship triplets from caption data. Second, grounding unlocalized objects in parsed triplets will meet ambiguity in visual-language alignment. Last, caption data typically are sparse and exhibit bias to partial observations of image content. These three issues make it hard for the model to generate comprehensive and accurate scene graphs. To fill this gap, we propose a simple yet effective framework, GPT4SGG, to synthesize scene graphs from holistic and region-specific narratives. The framework discards traditional language parser, and localize objects before obtaining relationship triplets. To obtain relationship triplets, holistic and dense region-specific narratives are generated from the image. With such textual representation of image data and a task-specific prompt, an LLM, particularly GPT-4, directly synthesizes a scene graph as "pseudo labels". Experimental results showcase GPT4SGG significantly improves the performance of SGG models trained on image-caption data. We believe this pioneering work can motivate further research into mining the visual reasoning capabilities of LLMs.
Abstract:Scene Graph Generation (SGG) offers a structured representation critical in many computer vision applications. Traditional SGG approaches, however, are limited by a closed-set assumption, restricting their ability to recognize only predefined object and relation categories. To overcome this, we categorize SGG scenarios into four distinct settings based on the node and edge: Closed-set SGG, Open Vocabulary (object) Detection-based SGG (OvD-SGG), Open Vocabulary Relation-based SGG (OvR-SGG), and Open Vocabulary Detection + Relation-based SGG (OvD+R-SGG). While object-centric open vocabulary SGG has been studied recently, the more challenging problem of relation-involved open-vocabulary SGG remains relatively unexplored. To fill this gap, we propose a unified framework named OvSGTR towards fully open vocabulary SGG from a holistic view. The proposed framework is an end-toend transformer architecture, which learns a visual-concept alignment for both nodes and edges, enabling the model to recognize unseen categories. For the more challenging settings of relation-involved open vocabulary SGG, the proposed approach integrates relation-aware pre-training utilizing image-caption data and retains visual-concept alignment through knowledge distillation. Comprehensive experimental results on the Visual Genome benchmark demonstrate the effectiveness and superiority of the proposed framework.
Abstract:There are two main issues in RGB-D salient object detection: (1) how to effectively integrate the complementarity from the cross-modal RGB-D data; (2) how to prevent the contamination effect from the unreliable depth map. In fact, these two problems are linked and intertwined, but the previous methods tend to focus only on the first problem and ignore the consideration of depth map quality, which may yield the model fall into the sub-optimal state. In this paper, we address these two issues in a holistic model synergistically, and propose a novel network named DPANet to explicitly model the potentiality of the depth map and effectively integrate the cross-modal complementarity. By introducing the depth potentiality perception, the network can perceive the potentiality of depth information in a learning-based manner, and guide the fusion process of two modal data to prevent the contamination occurred. The gated multi-modality attention module in the fusion process exploits the attention mechanism with a gate controller to capture long-range dependencies from a cross-modal perspective. Experimental results compared with 15 state-of-the-art methods on 8 datasets demonstrate the validity of the proposed approach both quantitatively and qualitatively.
Abstract:Deep convolutional neural networks have achieved competitive performance in salient object detection, in which how to learn effective and comprehensive features plays a critical role. Most of the previous works mainly adopted multiple level feature integration yet ignored the gap between different features. Besides, there also exists a dilution process of high-level features as they passed on the top-down pathway. To remedy these issues, we propose a novel network named GCPANet to effectively integrate low-level appearance features, high-level semantic features, and global context features through some progressive context-aware Feature Interweaved Aggregation (FIA) modules and generate the saliency map in a supervised way. Moreover, a Head Attention (HA) module is used to reduce information redundancy and enhance the top layers features by leveraging the spatial and channel-wise attention, and the Self Refinement (SR) module is utilized to further refine and heighten the input features. Furthermore, we design the Global Context Flow (GCF) module to generate the global context information at different stages, which aims to learn the relationship among different salient regions and alleviate the dilution effect of high-level features. Experimental results on six benchmark datasets demonstrate that the proposed approach outperforms the state-of-the-art methods both quantitatively and qualitatively.