Abstract:The past decade has witnessed notable achievements in self-supervised learning for video tasks. Recent efforts typically adopt the Masked Video Modeling (MVM) paradigm, leading to significant progress on multiple video tasks. However, two critical challenges remain: 1) Without human annotations, the random temporal sampling introduces uncertainty, increasing the difficulty of model training. 2) Previous MVM methods primarily recover the masked patches in the pixel space, leading to insufficient information compression for downstream tasks. To address these challenges jointly, we propose a self-supervised framework that leverages Temporal Correspondence for video Representation learning (T-CoRe). For challenge 1), we propose a sandwich sampling strategy that selects two auxiliary frames to reduce reconstruction uncertainty in a two-side-squeezing manner. Addressing challenge 2), we introduce an auxiliary branch into a self-distillation architecture to restore representations in the latent space, generating high-level semantic representations enriched with temporal information. Experiments of T-CoRe consistently present superior performance across several downstream tasks, demonstrating its effectiveness for video representation learning. The code is available at https://github.com/yafeng19/T-CORE.
Abstract:Existing diffusion-based purification methods aim to disrupt adversarial perturbations by introducing a certain amount of noise through a forward diffusion process, followed by a reverse process to recover clean examples. However, this approach is fundamentally flawed: the uniform operation of the forward process across all pixels compromises normal pixels while attempting to combat adversarial perturbations, resulting in the target model producing incorrect predictions. Simply relying on low-intensity noise is insufficient for effective defense. To address this critical issue, we implement a heterogeneous purification strategy grounded in the interpretability of neural networks. Our method decisively applies higher-intensity noise to specific pixels that the target model focuses on while the remaining pixels are subjected to only low-intensity noise. This requirement motivates us to redesign the sampling process of the diffusion model, allowing for the effective removal of varying noise levels. Furthermore, to evaluate our method against strong adaptative attack, our proposed method sharply reduces time cost and memory usage through a single-step resampling. The empirical evidence from extensive experiments across three datasets demonstrates that our method outperforms most current adversarial training and purification techniques by a substantial margin.
Abstract:The existence of noisy labels in real-world data negatively impacts the performance of deep learning models. Although much research effort has been devoted to improving the robustness towards noisy labels in classification tasks, the problem of noisy labels in deep metric learning (DML) remains under-explored. Existing noisy label learning methods designed for DML mainly discard suspicious noisy samples, resulting in a waste of the training data. To address this issue, we propose a noise-robust DML framework with SubGroup-based Positive-pair Selection (SGPS), which constructs reliable positive pairs for noisy samples to enhance the sample utilization. Specifically, SGPS first effectively identifies clean and noisy samples by a probability-based clean sample selectionstrategy. To further utilize the remaining noisy samples, we discover their potential similar samples based on the subgroup information given by a subgroup generation module and then aggregate them into informative positive prototypes for each noisy sample via a positive prototype generation module. Afterward, a new contrastive loss is tailored for the noisy samples with their selected positive pairs. SGPS can be easily integrated into the training process of existing pair-wise DML tasks, like image retrieval and face recognition. Extensive experiments on multiple synthetic and real-world large-scale label noise datasets demonstrate the effectiveness of our proposed method. Without any bells and whistles, our SGPS framework outperforms the state-of-the-art noisy label DML methods. Code is available at \url{https://github.com/smuelpeng/SGPS-NoiseFreeDML}.
Abstract:Real-world datasets often exhibit a long-tailed distribution, where vast majority of classes known as tail classes have only few samples. Traditional methods tend to overfit on these tail classes. Recently, a new approach called Imbalanced SAM (ImbSAM) is proposed to leverage the generalization benefits of Sharpness-Aware Minimization (SAM) for long-tailed distributions. The main strategy is to merely enhance the smoothness of the loss function for tail classes. However, we argue that improving generalization in long-tail scenarios requires a careful balance between head and tail classes. We show that neither SAM nor ImbSAM alone can fully achieve this balance. For SAM, we prove that although it enhances the model's generalization ability by escaping saddle point in the overall loss landscape, it does not effectively address this for tail-class losses. Conversely, while ImbSAM is more effective at avoiding saddle points in tail classes, the head classes are trained insufficiently, resulting in significant performance drops. Based on these insights, we propose Stage-wise Saddle Escaping SAM (SSE-SAM), which uses complementary strengths of ImbSAM and SAM in a phased approach. Initially, SSE-SAM follows the majority sample to avoid saddle points of the head-class loss. During the later phase, it focuses on tail-classes to help them escape saddle points. Our experiments confirm that SSE-SAM has better ability in escaping saddles both on head and tail classes, and shows performance improvements.
Abstract:Data-free model stealing involves replicating the functionality of a target model into a substitute model without accessing the target model's structure, parameters, or training data. The adversary can only access the target model's predictions for generated samples. Once the substitute model closely approximates the behavior of the target model, attackers can exploit its white-box characteristics for subsequent malicious activities, such as adversarial attacks. Existing methods within cooperative game frameworks often produce samples with high confidence for the prediction of the substitute model, which makes it difficult for the substitute model to replicate the behavior of the target model. This paper presents a new data-free model stealing approach called Query Efficient Data Generation (\textbf{QEDG}). We introduce two distinct loss functions to ensure the generation of sufficient samples that closely and uniformly align with the target model's decision boundary across multiple classes. Building on the limitation of current methods, which typically yield only one piece of supervised information per query, we propose the query-free sample augmentation that enables the acquisition of additional supervised information without increasing the number of queries. Motivated by theoretical analysis, we adopt the consistency rate metric, which more accurately evaluates the similarity between the substitute and target models. We conducted extensive experiments to verify the effectiveness of our proposed method, which achieved better performance with fewer queries compared to the state-of-the-art methods on the real \textbf{MLaaS} scenario and five datasets.
Abstract:This paper addresses the challenge of Granularity Competition in fine-grained classification tasks, which arises due to the semantic gap between multi-granularity labels. Existing approaches typically develop independent hierarchy-aware models based on shared features extracted from a common base encoder. However, because coarse-grained levels are inherently easier to learn than finer ones, the base encoder tends to prioritize coarse feature abstractions, which impedes the learning of fine-grained features. To overcome this challenge, we propose a novel framework called the Bidirectional Logits Tree (BiLT) for Granularity Reconcilement. The key idea is to develop classifiers sequentially from the finest to the coarsest granularities, rather than parallelly constructing a set of classifiers based on the same input features. In this setup, the outputs of finer-grained classifiers serve as inputs for coarser-grained ones, facilitating the flow of hierarchical semantic information across different granularities. On top of this, we further introduce an Adaptive Intra-Granularity Difference Learning (AIGDL) approach to uncover subtle semantic differences between classes within the same granularity. Extensive experiments demonstrate the effectiveness of our proposed method.
Abstract:Multi-label Out-Of-Distribution (OOD) detection aims to discriminate the OOD samples from the multi-label In-Distribution (ID) ones. Compared with its multiclass counterpart, it is crucial to model the joint information among classes. To this end, JointEnergy, which is a representative multi-label OOD inference criterion, summarizes the logits of all the classes. However, we find that JointEnergy can produce an imbalance problem in OOD detection, especially when the model lacks enough discrimination ability. Specifically, we find that the samples only related to minority classes tend to be classified as OOD samples due to the ambiguous energy decision boundary. Besides, imbalanced multi-label learning methods, originally designed for ID ones, would not be suitable for OOD detection scenarios, even producing a serious negative transfer effect. In this paper, we resort to auxiliary outlier exposure (OE) and propose an unknown-aware multi-label learning framework to reshape the uncertainty energy space layout. In this framework, the energy score is separately optimized for tail ID samples and unknown samples, and the energy distribution gap between them is expanded, such that the tail ID samples can have a significantly larger energy score than the OOD ones. What's more, a simple yet effective measure is designed to select more informative OE datasets. Finally, comprehensive experimental results on multiple multi-label and OOD datasets reveal the effectiveness of the proposed method.
Abstract:Diffusion models are powerful generative models, and this capability can also be applied to discrimination. The inner activations of a pre-trained diffusion model can serve as features for discriminative tasks, namely, diffusion feature. We discover that diffusion feature has been hindered by a hidden yet universal phenomenon that we call content shift. To be specific, there are content differences between features and the input image, such as the exact shape of a certain object. We locate the cause of content shift as one inherent characteristic of diffusion models, which suggests the broad existence of this phenomenon in diffusion feature. Further empirical study also indicates that its negative impact is not negligible even when content shift is not visually perceivable. Hence, we propose to suppress content shift to enhance the overall quality of diffusion features. Specifically, content shift is related to the information drift during the process of recovering an image from the noisy input, pointing out the possibility of turning off-the-shelf generation techniques into tools for content shift suppression. We further propose a practical guideline named GATE to efficiently evaluate the potential benefit of a technique and provide an implementation of our methodology. Despite the simplicity, the proposed approach has achieved superior results on various tasks and datasets, validating its potential as a generic booster for diffusion features. Our code is available at https://github.com/Darkbblue/diffusion-content-shift.
Abstract:Diffusion models are initially designed for image generation. Recent research shows that the internal signals within their backbones, named activations, can also serve as dense features for various discriminative tasks such as semantic segmentation. Given numerous activations, selecting a small yet effective subset poses a fundamental problem. To this end, the early study of this field performs a large-scale quantitative comparison of the discriminative ability of the activations. However, we find that many potential activations have not been evaluated, such as the queries and keys used to compute attention scores. Moreover, recent advancements in diffusion architectures bring many new activations, such as those within embedded ViT modules. Both combined, activation selection remains unresolved but overlooked. To tackle this issue, this paper takes a further step with a much broader range of activations evaluated. Considering the significant increase in activations, a full-scale quantitative comparison is no longer operational. Instead, we seek to understand the properties of these activations, such that the activations that are clearly inferior can be filtered out in advance via simple qualitative evaluation. After careful analysis, we discover three properties universal among diffusion models, enabling this study to go beyond specific models. On top of this, we present effective feature selection solutions for several popular diffusion models. Finally, the experiments across multiple discriminative tasks validate the superiority of our method over the SOTA competitors. Our code is available at https://github.com/Darkbblue/generic-diffusion-feature.
Abstract:The Area Under the ROC Curve (AUC) is a well-known metric for evaluating instance-level long-tail learning problems. In the past two decades, many AUC optimization methods have been proposed to improve model performance under long-tail distributions. In this paper, we explore AUC optimization methods in the context of pixel-level long-tail semantic segmentation, a much more complicated scenario. This task introduces two major challenges for AUC optimization techniques. On one hand, AUC optimization in a pixel-level task involves complex coupling across loss terms, with structured inner-image and pairwise inter-image dependencies, complicating theoretical analysis. On the other hand, we find that mini-batch estimation of AUC loss in this case requires a larger batch size, resulting in an unaffordable space complexity. To address these issues, we develop a pixel-level AUC loss function and conduct a dependency-graph-based theoretical analysis of the algorithm's generalization ability. Additionally, we design a Tail-Classes Memory Bank (T-Memory Bank) to manage the significant memory demand. Finally, comprehensive experiments across various benchmarks confirm the effectiveness of our proposed AUCSeg method. The code is available at https://github.com/boyuh/AUCSeg.