Abstract:Weakly supervised learning has recently achieved considerable success in reducing annotation costs and label noise. Unfortunately, existing weakly supervised learning methods are short of ability in generating reliable labels via pre-trained vision-language models (VLMs). In this paper, we propose a novel weakly supervised labeling setting, namely True-False Labels (TFLs) which can achieve high accuracy when generated by VLMs. The TFL indicates whether an instance belongs to the label, which is randomly and uniformly sampled from the candidate label set. Specifically, we theoretically derive a risk-consistent estimator to explore and utilize the conditional probability distribution information of TFLs. Besides, we propose a convolutional-based Multi-modal Prompt Retrieving (MRP) method to bridge the gap between the knowledge of VLMs and target learning tasks. Experimental results demonstrate the effectiveness of the proposed TFL setting and MRP learning method. The code to reproduce the experiments is at https://github.com/Tranquilxu/TMP.
Abstract:In multi-label classification, each training instance is associated with multiple class labels simultaneously. Unfortunately, collecting the fully precise class labels for each training instance is time- and labor-consuming for real-world applications. To alleviate this problem, a novel labeling setting termed \textit{Determined Multi-Label Learning} (DMLL) is proposed, aiming to effectively alleviate the labeling cost inherent in multi-label tasks. In this novel labeling setting, each training instance is associated with a \textit{determined label} (either "Yes" or "No"), which indicates whether the training instance contains the provided class label. The provided class label is randomly and uniformly selected from the whole candidate labels set. Besides, each training instance only need to be determined once, which significantly reduce the annotation cost of the labeling task for multi-label datasets. In this paper, we theoretically derive an risk-consistent estimator to learn a multi-label classifier from these determined-labeled training data. Additionally, we introduce a similarity-based prompt learning method for the first time, which minimizes the risk-consistent loss of large-scale pre-trained models to learn a supplemental prompt with richer semantic information. Extensive experimental validation underscores the efficacy of our approach, demonstrating superior performance compared to existing state-of-the-art methods.