Abstract:Pansharpening aims to combine a high-resolution panchromatic (PAN) image with a low-resolution multispectral (LRMS) image to produce a high-resolution multispectral (HRMS) image. Although pansharpening in the frequency domain offers clear advantages, most existing methods either continue to operate solely in the spatial domain or fail to fully exploit the benefits of the frequency domain. To address this issue, we innovatively propose Multi-Frequency Fusion Attention (MFFA), which leverages wavelet transforms to cleanly separate frequencies and enable lossless reconstruction across different frequency domains. Then, we generate Frequency-Query, Spatial-Key, and Fusion-Value based on the physical meanings represented by different features, which enables a more effective capture of specific information in the frequency domain. Additionally, we focus on the preservation of frequency features across different operations. On a broader level, our network employs a wavelet pyramid to progressively fuse information across multiple scales. Compared to previous frequency domain approaches, our network better prevents confusion and loss of different frequency features during the fusion process. Quantitative and qualitative experiments on multiple datasets demonstrate that our method outperforms existing approaches and shows significant generalization capabilities for real-world scenarios.
Abstract:Weakly supervised learning has recently achieved considerable success in reducing annotation costs and label noise. Unfortunately, existing weakly supervised learning methods are short of ability in generating reliable labels via pre-trained vision-language models (VLMs). In this paper, we propose a novel weakly supervised labeling setting, namely True-False Labels (TFLs) which can achieve high accuracy when generated by VLMs. The TFL indicates whether an instance belongs to the label, which is randomly and uniformly sampled from the candidate label set. Specifically, we theoretically derive a risk-consistent estimator to explore and utilize the conditional probability distribution information of TFLs. Besides, we propose a convolutional-based Multi-modal Prompt Retrieving (MRP) method to bridge the gap between the knowledge of VLMs and target learning tasks. Experimental results demonstrate the effectiveness of the proposed TFL setting and MRP learning method. The code to reproduce the experiments is at https://github.com/Tranquilxu/TMP.