Abstract:Pansharpening aims to combine a high-resolution panchromatic (PAN) image with a low-resolution multispectral (LRMS) image to produce a high-resolution multispectral (HRMS) image. Although pansharpening in the frequency domain offers clear advantages, most existing methods either continue to operate solely in the spatial domain or fail to fully exploit the benefits of the frequency domain. To address this issue, we innovatively propose Multi-Frequency Fusion Attention (MFFA), which leverages wavelet transforms to cleanly separate frequencies and enable lossless reconstruction across different frequency domains. Then, we generate Frequency-Query, Spatial-Key, and Fusion-Value based on the physical meanings represented by different features, which enables a more effective capture of specific information in the frequency domain. Additionally, we focus on the preservation of frequency features across different operations. On a broader level, our network employs a wavelet pyramid to progressively fuse information across multiple scales. Compared to previous frequency domain approaches, our network better prevents confusion and loss of different frequency features during the fusion process. Quantitative and qualitative experiments on multiple datasets demonstrate that our method outperforms existing approaches and shows significant generalization capabilities for real-world scenarios.
Abstract:The implementation of diffusion-based pansharpening task is predominantly constrained by its slow inference speed, which results from numerous sampling steps. Despite the existing techniques aiming to accelerate sampling, they often compromise performance when fusing multi-source images. To ease this limitation, we introduce a novel and efficient diffusion model named Diffusion Model for Pansharpening by Inferring Residual Inference (ResPanDiff), which significantly reduces the number of diffusion steps without sacrificing the performance to tackle pansharpening task. In ResPanDiff, we innovatively propose a Markov chain that transits from noisy residuals to the residuals between the LRMS and HRMS images, thereby reducing the number of sampling steps and enhancing performance. Additionally, we design the latent space to help model extract more features at the encoding stage, Shallow Cond-Injection~(SC-I) to help model fetch cond-injected hidden features with higher dimensions, and loss functions to give a better guidance for the residual generation task. enabling the model to achieve superior performance in residual generation. Furthermore, experimental evaluations on pansharpening datasets demonstrate that the proposed method achieves superior outcomes compared to recent state-of-the-art~(SOTA) techniques, requiring only 15 sampling steps, which reduces over $90\%$ step compared with the benchmark diffusion models. Our experiments also include thorough discussions and ablation studies to underscore the effectiveness of our approach.
Abstract:The attention mechanism has been proven to be an effective way to improve spiking neural network (SNN). However, based on the fact that the current SNN input data flow is split into tensors to process on GPUs, none of the previous works consider the properties of tensors to implement an attention module. This inspires us to rethink current SNN from the perspective of tensor-relevant theories. Using tensor decomposition, we design the \textit{projected full attention} (PFA) module, which demonstrates excellent results with linearly growing parameters. Specifically, PFA is composed by the \textit{linear projection of spike tensor} (LPST) module and \textit{attention map composing} (AMC) module. In LPST, we start by compressing the original spike tensor into three projected tensors using a single property-preserving strategy with learnable parameters for each dimension. Then, in AMC, we exploit the inverse procedure of the tensor decomposition process to combine the three tensors into the attention map using a so-called connecting factor. To validate the effectiveness of the proposed PFA module, we integrate it into the widely used VGG and ResNet architectures for classification tasks. Our method achieves state-of-the-art performance on both static and dynamic benchmark datasets, surpassing the existing SNN models with Transformer-based and CNN-based backbones.