Abstract:Recent works have demonstrated the effectiveness of retrieval augmentation in the Event Argument Extraction (EAE) task. However, existing retrieval-based EAE methods have two main limitations: (1) input length constraints and (2) the gap between the retriever and the inference model. These issues limit the diversity and quality of the retrieved information. In this paper, we propose a Compressive Memory-based Retrieval (CMR) mechanism for EAE, which addresses the two limitations mentioned above. Our compressive memory, designed as a dynamic matrix that effectively caches retrieved information and supports continuous updates, overcomes the limitations of the input length. Additionally, after pre-loading all candidate demonstrations into the compressive memory, the model further retrieves and filters relevant information from memory based on the input query, bridging the gap between the retriever and the inference model. Extensive experiments show that our method achieves new state-of-the-art performance on three public datasets (RAMS, WikiEvents, ACE05), significantly outperforming existing retrieval-based EAE methods.
Abstract:Existing raindrop removal datasets have two shortcomings. First, they consist of images captured by cameras with a focus on the background, leading to the presence of blurry raindrops. To our knowledge, none of these datasets include images where the focus is specifically on raindrops, which results in a blurry background. Second, these datasets predominantly consist of daytime images, thereby lacking nighttime raindrop scenarios. Consequently, algorithms trained on these datasets may struggle to perform effectively in raindrop-focused or nighttime scenarios. The absence of datasets specifically designed for raindrop-focused and nighttime raindrops constrains research in this area. In this paper, we introduce a large-scale, real-world raindrop removal dataset called Raindrop Clarity. Raindrop Clarity comprises 15,186 high-quality pairs/triplets (raindrops, blur, and background) of images with raindrops and the corresponding clear background images. There are 5,442 daytime raindrop images and 9,744 nighttime raindrop images. Specifically, the 5,442 daytime images include 3,606 raindrop- and 1,836 background-focused images. While the 9,744 nighttime images contain 4,838 raindrop- and 4,906 background-focused images. Our dataset will enable the community to explore background-focused and raindrop-focused images, including challenges unique to daytime and nighttime conditions. Our data and code are available at: \url{https://github.com/jinyeying/RaindropClarity}
Abstract:Deep Neural Networks (DNNs) have been successfully implemented across various signal processing fields, resulting in significant enhancements in performance. However, DNNs generally require substantial computational resources, leading to significant economic costs and posing challenges for their deployment on resource-constrained edge devices. In this study, we take advantage of spiking neural networks (SNNs) and quantization technologies to develop an energy-efficient and lightweight neuromorphic signal processing system. Our system is characterized by two principal innovations: a threshold-adaptive encoding (TAE) method and a quantized ternary SNN (QT-SNN). The TAE method can efficiently encode time-varying analog signals into sparse ternary spike trains, thereby reducing energy and memory demands for signal processing. QT-SNN, compatible with ternary spike trains from the TAE method, quantifies both membrane potentials and synaptic weights to reduce memory requirements while maintaining performance. Extensive experiments are conducted on two typical signal-processing tasks: speech and electroencephalogram recognition. The results demonstrate that our neuromorphic signal processing system achieves state-of-the-art (SOTA) performance with a 94% reduced memory requirement. Furthermore, through theoretical energy consumption analysis, our system shows 7.5x energy saving compared to other SNN works. The efficiency and efficacy of the proposed system highlight its potential as a promising avenue for energy-efficient signal processing.
Abstract:Thanks to Deep Neural Networks (DNNs), the accuracy of Keyword Spotting (KWS) has made substantial progress. However, as KWS systems are usually implemented on edge devices, energy efficiency becomes a critical requirement besides performance. Here, we take advantage of spiking neural networks' energy efficiency and propose an end-to-end lightweight KWS model. The model consists of two innovative modules: 1) Global-Local Spiking Convolution (GLSC) module and 2) Bottleneck-PLIF module. Compared to the hand-crafted feature extraction methods, the GLSC module achieves speech feature extraction that is sparser, more energy-efficient, and yields better performance. The Bottleneck-PLIF module further processes the signals from GLSC with the aim to achieve higher accuracy with fewer parameters. Extensive experiments are conducted on the Google Speech Commands Dataset (V1 and V2). The results show our method achieves competitive performance among SNN-based KWS models with fewer parameters.
Abstract:Brain-inspired Spiking Neural Networks (SNNs) leverage sparse spikes to represent information and process them in an asynchronous event-driven manner, offering an energy-efficient paradigm for the next generation of machine intelligence. However, the current focus within the SNN community prioritizes accuracy optimization through the development of large-scale models, limiting their viability in resource-constrained and low-power edge devices. To address this challenge, we introduce a lightweight and hardware-friendly Quantized SNN (Q-SNN) that applies quantization to both synaptic weights and membrane potentials. By significantly compressing these two key elements, the proposed Q-SNNs substantially reduce both memory usage and computational complexity. Moreover, to prevent the performance degradation caused by this compression, we present a new Weight-Spike Dual Regulation (WS-DR) method inspired by information entropy theory. Experimental evaluations on various datasets, including static and neuromorphic, demonstrate that our Q-SNNs outperform existing methods in terms of both model size and accuracy. These state-of-the-art results in efficiency and efficacy suggest that the proposed method can significantly improve edge intelligent computing.
Abstract:Spiking federated learning is an emerging distributed learning paradigm that allows resource-constrained devices to train collaboratively at low power consumption without exchanging local data. It takes advantage of both the privacy computation property in federated learning (FL) and the energy efficiency in spiking neural networks (SNN). Thus, it is highly promising to revolutionize the efficient processing of multimedia data. However, existing spiking federated learning methods employ a random selection approach for client aggregation, assuming unbiased client participation. This neglect of statistical heterogeneity affects the convergence and accuracy of the global model significantly. In our work, we propose a credit assignment-based active client selection strategy, the SFedCA, to judiciously aggregate clients that contribute to the global sample distribution balance. Specifically, the client credits are assigned by the firing intensity state before and after local model training, which reflects the local data distribution difference from the global model. Comprehensive experiments are conducted on various non-identical and independent distribution (non-IID) scenarios. The experimental results demonstrate that the SFedCA outperforms the existing state-of-the-art spiking federated learning methods, and requires fewer communication rounds.
Abstract:Recent advancements in neuroscience research have propelled the development of Spiking Neural Networks (SNNs), which not only have the potential to further advance neuroscience research but also serve as an energy-efficient alternative to Artificial Neural Networks (ANNs) due to their spike-driven characteristics. However, previous studies often neglected the multiscale information and its spatiotemporal correlation between event data, leading SNN models to approximate each frame of input events as static images. We hypothesize that this oversimplification significantly contributes to the performance gap between SNNs and traditional ANNs. To address this issue, we have designed a Spiking Multiscale Attention (SMA) module that captures multiscale spatiotemporal interaction information. Furthermore, we developed a regularization method named Attention ZoneOut (AZO), which utilizes spatiotemporal attention weights to reduce the model's generalization error through pseudo-ensemble training. Our approach has achieved state-of-the-art results on mainstream neural morphology datasets. Additionally, we have reached a performance of 77.1% on the Imagenet-1K dataset using a 104-layer ResNet architecture enhanced with SMA and AZO. This achievement confirms the state-of-the-art performance of SNNs with non-transformer architectures and underscores the effectiveness of our method in bridging the performance gap between SNN models and traditional ANN models.
Abstract:Recent mainstream event argument extraction methods process each event in isolation, resulting in inefficient inference and ignoring the correlations among multiple events. To address these limitations, here we propose a multiple-event argument extraction model DEEIA (Dependency-guided Encoding and Event-specific Information Aggregation), capable of extracting arguments from all events within a document simultaneouslyThe proposed DEEIA model employs a multi-event prompt mechanism, comprising DE and EIA modules. The DE module is designed to improve the correlation between prompts and their corresponding event contexts, whereas the EIA module provides event-specific information to improve contextual understanding. Extensive experiments show that our method achieves new state-of-the-art performance on four public datasets (RAMS, WikiEvents, MLEE, and ACE05), while significantly saving the inference time compared to the baselines. Further analyses demonstrate the effectiveness of the proposed modules.
Abstract:Brain-inspired spiking neural networks (SNNs) have gained prominence in the field of neuromorphic computing owing to their low energy consumption during feedforward inference on neuromorphic hardware. However, it remains an open challenge how to effectively benefit from the sparse event-driven property of SNNs to minimize backpropagation learning costs. In this paper, we conduct a comprehensive examination of the existing event-driven learning algorithms, reveal their limitations, and propose novel solutions to overcome them. Specifically, we introduce two novel event-driven learning methods: the spike-timing-dependent event-driven (STD-ED) and membrane-potential-dependent event-driven (MPD-ED) algorithms. These proposed algorithms leverage precise neuronal spike timing and membrane potential, respectively, for effective learning. The two methods are extensively evaluated on static and neuromorphic datasets to confirm their superior performance. They outperform existing event-driven counterparts by up to 2.51% for STD-ED and 6.79% for MPD-ED on the CIFAR-100 dataset. In addition, we theoretically and experimentally validate the energy efficiency of our methods on neuromorphic hardware. On-chip learning experiments achieved a remarkable 30-fold reduction in energy consumption over time-step-based surrogate gradient methods. The demonstrated efficiency and efficacy of the proposed event-driven learning methods emphasize their potential to significantly advance the fields of neuromorphic computing, offering promising avenues for energy-efficiency applications.
Abstract:Spiking Neural Networks (SNNs) mimic the information-processing mechanisms of the human brain and are highly energy-efficient, making them well-suited for low-power edge devices. However, the pursuit of accuracy in current studies leads to large, long-timestep SNNs, conflicting with the resource constraints of these devices. In order to design lightweight and efficient SNNs, we propose a new approach named LitESNN that incorporates both spatial and temporal compression into the automated network design process. Spatially, we present a novel Compressive Convolution block (CompConv) to expand the search space to support pruning and mixed-precision quantization while utilizing the shared weights and pruning mask to reduce the computation. Temporally, we are the first to propose a compressive timestep search to identify the optimal number of timesteps under specific computation cost constraints. Finally, we formulate a joint optimization to simultaneously learn the architecture parameters and spatial-temporal compression strategies to achieve high performance while minimizing memory and computation costs. Experimental results on CIFAR10, CIFAR100, and Google Speech Command datasets demonstrate our proposed LitESNNs can achieve competitive or even higher accuracy with remarkably smaller model sizes and fewer computation costs. Furthermore, we validate the effectiveness of our LitESNN on the trade-off between accuracy and resource cost and show the superiority of our joint optimization. Additionally, we conduct energy analysis to further confirm the energy efficiency of LitESNN