Abstract:Manual assignment of Anatomical Therapeutic Chemical (ATC) codes to prescription records is a significant bottleneck in healthcare research and operations at Ontario Health and InterRAI Canada, requiring extensive expert time and effort. To automate this process while maintaining data privacy, we develop a practical approach using locally deployable large language models (LLMs). Inspired by recent advances in automatic International Classification of Diseases (ICD) coding, our method frames ATC coding as a hierarchical information extraction task, guiding LLMs through the ATC ontology level by level. We evaluate our approach using GPT-4o as an accuracy ceiling and focus development on open-source Llama models suitable for privacy-sensitive deployment. Testing across Health Canada drug product data, the RABBITS benchmark, and real clinical notes from Ontario Health, our method achieves 78% exact match accuracy with GPT-4o and 60% with Llama 3.1 70B. We investigate knowledge grounding through drug definitions, finding modest improvements in accuracy. Further, we show that fine-tuned Llama 3.1 8B matches zero-shot Llama 3.1 70B accuracy, suggesting that effective ATC coding is feasible with smaller models. Our results demonstrate the feasibility of automatic ATC coding in privacy-sensitive healthcare environments, providing a foundation for future deployments.
Abstract:We introduce OBI-Bench, a holistic benchmark crafted to systematically evaluate large multi-modal models (LMMs) on whole-process oracle bone inscriptions (OBI) processing tasks demanding expert-level domain knowledge and deliberate cognition. OBI-Bench includes 5,523 meticulously collected diverse-sourced images, covering five key domain problems: recognition, rejoining, classification, retrieval, and deciphering. These images span centuries of archaeological findings and years of research by front-line scholars, comprising multi-stage font appearances from excavation to synthesis, such as original oracle bone, inked rubbings, oracle bone fragments, cropped single character, and handprinted character. Unlike existing benchmarks, OBI-Bench focuses on advanced visual perception and reasoning with OBI-specific knowledge, challenging LMMs to perform tasks akin to those faced by experts. The evaluation of 6 proprietary LMMs as well as 17 open-source LMMs highlights the substantial challenges and demands posed by OBI-Bench. Even the latest versions of GPT-4o, Gemini 1.5 Pro, and Qwen-VL-Max are still far from public-level humans in some fine-grained perception tasks. However, they perform at a level comparable to untrained humans in deciphering task, indicating remarkable capabilities in offering new interpretative perspectives and generating creative guesses. We hope OBI-Bench can facilitate the community to develop domain-specific multi-modal foundation models towards ancient language research and delve deeper to discover and enhance these untapped potentials of LMMs.
Abstract:Recent advances have demonstrated that large language models (LLMs) excel as listwise rerankers, but their high computational demands remain a barrier to widespread adoption. Further, the traditional language modeling (LM) objective is not ideally suited for reranking tasks. FIRST is a novel approach that addresses these challenges by integrating a learning-to-rank objective and leveraging the logits of only the first generated token, thereby significantly reducing inference latency compared to traditional LLM rerankers. In this study, we extend the evaluation of FIRST to the TREC Deep Learning datasets (DL19-22), validating its robustness across diverse domains. We investigate the influence of different first-stage retrievers on FIRST rerankers, observing diminishing returns and patterns consistent with traditional LLM rerankers. Through applying the FIRST objective to a broader range of backbone models, we achieve effectiveness surpassing the original implementation. Our experiments confirm that fast reranking with single-token logits does not compromise out-of-domain reranking quality. To better quantify the computational savings in the original study, we measure and compare latency to find a 21%-42% gain across various models and benchmarks. Moreover, while LM training implicitly improves zero-shot single-token reranking, our experiments also raise questions about whether LM pre-training may hinder subsequent fine-tuning with the FIRST objective. These findings pave the way for more efficient and effective listwise reranking in future applications.
Abstract:With the rising interest in research on Large Multi-modal Models (LMMs) for video understanding, many studies have emphasized general video comprehension capabilities, neglecting the systematic exploration into video quality understanding. To address this oversight, we introduce Q-Bench-Video in this paper, a new benchmark specifically designed to evaluate LMMs' proficiency in discerning video quality. a) To ensure video source diversity, Q-Bench-Video encompasses videos from natural scenes, AI-generated Content (AIGC), and Computer Graphics (CG). b) Building on the traditional multiple-choice questions format with the Yes-or-No and What-How categories, we include Open-ended questions to better evaluate complex scenarios. Additionally, we incorporate the video pair quality comparison question to enhance comprehensiveness. c) Beyond the traditional Technical, Aesthetic, and Temporal distortions, we have expanded our evaluation aspects to include the dimension of AIGC distortions, which addresses the increasing demand for video generation. Finally, we collect a total of 2,378 question-answer pairs and test them on 12 open-source & 5 proprietary LMMs. Our findings indicate that while LMMs have a foundational understanding of video quality, their performance remains incomplete and imprecise, with a notable discrepancy compared to human performance. Through Q-Bench-Video, we seek to catalyze community interest, stimulate further research, and unlock the untapped potential of LMMs to close the gap in video quality understanding.
Abstract:We propose an image-conditioned diffusion model to estimate high angular resolution diffusion weighted imaging (DWI) from a low angular resolution acquisition. Our model, which we call QID$^2$, takes as input a set of low angular resolution DWI data and uses this information to estimate the DWI data associated with a target gradient direction. We leverage a U-Net architecture with cross-attention to preserve the positional information of the reference images, further guiding the target image generation. We train and evaluate QID$^2$ on single-shell DWI samples curated from the Human Connectome Project (HCP) dataset. Specifically, we sub-sample the HCP gradient directions to produce low angular resolution DWI data and train QID$^2$ to reconstruct the missing high angular resolution samples. We compare QID$^2$ with two state-of-the-art GAN models. Our results demonstrate that QID$^2$ not only achieves higher-quality generated images, but it consistently outperforms the GAN models in downstream tensor estimation across multiple metrics. Taken together, this study highlights the potential of diffusion models, and QID$^2$ in particular, for q-space up-sampling, thus offering a promising toolkit for clinical and research applications.
Abstract:We propose a lesion-aware graph neural network (LEGNet) to predict language ability from resting-state fMRI (rs-fMRI) connectivity in patients with post-stroke aphasia. Our model integrates three components: an edge-based learning module that encodes functional connectivity between brain regions, a lesion encoding module, and a subgraph learning module that leverages functional similarities for prediction. We use synthetic data derived from the Human Connectome Project (HCP) for hyperparameter tuning and model pretraining. We then evaluate the performance using repeated 10-fold cross-validation on an in-house neuroimaging dataset of post-stroke aphasia. Our results demonstrate that LEGNet outperforms baseline deep learning methods in predicting language ability. LEGNet also exhibits superior generalization ability when tested on a second in-house dataset that was acquired under a slightly different neuroimaging protocol. Taken together, the results of this study highlight the potential of LEGNet in effectively learning the relationships between rs-fMRI connectivity and language ability in a patient cohort with brain lesions for improved post-stroke aphasia evaluation.
Abstract:UHD images, typically with resolutions equal to or higher than 4K, pose a significant challenge for efficient image quality assessment (IQA) algorithms, as adopting full-resolution images as inputs leads to overwhelming computational complexity and commonly used pre-processing methods like resizing or cropping may cause substantial loss of detail. To address this problem, we design a multi-branch deep neural network (DNN) to assess the quality of UHD images from three perspectives: global aesthetic characteristics, local technical distortions, and salient content perception. Specifically, aesthetic features are extracted from low-resolution images downsampled from the UHD ones, which lose high-frequency texture information but still preserve the global aesthetics characteristics. Technical distortions are measured using a fragment image composed of mini-patches cropped from UHD images based on the grid mini-patch sampling strategy. The salient content of UHD images is detected and cropped to extract quality-aware features from the salient regions. We adopt the Swin Transformer Tiny as the backbone networks to extract features from these three perspectives. The extracted features are concatenated and regressed into quality scores by a two-layer multi-layer perceptron (MLP) network. We employ the mean square error (MSE) loss to optimize prediction accuracy and the fidelity loss to optimize prediction monotonicity. Experimental results show that the proposed model achieves the best performance on the UHD-IQA dataset while maintaining the lowest computational complexity, demonstrating its effectiveness and efficiency. Moreover, the proposed model won first prize in ECCV AIM 2024 UHD-IQA Challenge. The code is available at https://github.com/sunwei925/UIQA.
Abstract:Just noticeable distortion (JND), representing the threshold of distortion in an image that is minimally perceptible to the human visual system (HVS), is crucial for image compression algorithms to achieve a trade-off between transmission bit rate and image quality. However, traditional JND prediction methods only rely on pixel-level or sub-band level features, lacking the ability to capture the impact of image content on JND. To bridge this gap, we propose a Semantic-Guided JND (SG-JND) network to leverage semantic information for JND prediction. In particular, SG-JND consists of three essential modules: the image preprocessing module extracts semantic-level patches from images, the feature extraction module extracts multi-layer features by utilizing the cross-scale attention layers, and the JND prediction module regresses the extracted features into the final JND value. Experimental results show that SG-JND achieves the state-of-the-art performance on two publicly available JND datasets, which demonstrates the effectiveness of SG-JND and highlight the significance of incorporating semantic information in JND assessment.
Abstract:In recent years, artificial intelligence (AI) driven video generation has garnered significant attention due to advancements in stable diffusion and large language model techniques. Thus, there is a great demand for accurate video quality assessment (VQA) models to measure the perceptual quality of AI-generated content (AIGC) videos as well as optimize video generation techniques. However, assessing the quality of AIGC videos is quite challenging due to the highly complex distortions they exhibit (e.g., unnatural action, irrational objects, etc.). Therefore, in this paper, we try to systemically investigate the AIGC-VQA problem from both subjective and objective quality assessment perspectives. For the subjective perspective, we construct a Large-scale Generated Vdeo Quality assessment (LGVQ) dataset, consisting of 2,808 AIGC videos generated by 6 video generation models using 468 carefully selected text prompts. Unlike previous subjective VQA experiments, we evaluate the perceptual quality of AIGC videos from three dimensions: spatial quality, temporal quality, and text-to-video alignment, which hold utmost importance for current video generation techniques. For the objective perspective, we establish a benchmark for evaluating existing quality assessment metrics on the LGVQ dataset, which reveals that current metrics perform poorly on the LGVQ dataset. Thus, we propose a Unify Generated Video Quality assessment (UGVQ) model to comprehensively and accurately evaluate the quality of AIGC videos across three aspects using a unified model, which uses visual, textual and motion features of video and corresponding prompt, and integrates key features to enhance feature expression. We hope that our benchmark can promote the development of quality evaluation metrics for AIGC videos. The LGVQ dataset and the UGVQ metric will be publicly released.
Abstract:Assessing action quality is both imperative and challenging due to its significant impact on the quality of AI-generated videos, further complicated by the inherently ambiguous nature of actions within AI-generated video (AIGV). Current action quality assessment (AQA) algorithms predominantly focus on actions from real specific scenarios and are pre-trained with normative action features, thus rendering them inapplicable in AIGVs. To address these problems, we construct GAIA, a Generic AI-generated Action dataset, by conducting a large-scale subjective evaluation from a novel causal reasoning-based perspective, resulting in 971,244 ratings among 9,180 video-action pairs. Based on GAIA, we evaluate a suite of popular text-to-video (T2V) models on their ability to generate visually rational actions, revealing their pros and cons on different categories of actions. We also extend GAIA as a testbed to benchmark the AQA capacity of existing automatic evaluation methods. Results show that traditional AQA methods, action-related metrics in recent T2V benchmarks, and mainstream video quality methods correlate poorly with human opinions, indicating a sizable gap between current models and human action perception patterns in AIGVs. Our findings underscore the significance of action quality as a unique perspective for studying AIGVs and can catalyze progress towards methods with enhanced capacities for AQA in AIGVs.