Abstract:The oracle bone inscription (OBI) recognition plays a significant role in understanding the history and culture of ancient China. However, the existing OBI datasets suffer from a long-tail distribution problem, leading to biased performance of OBI recognition models across majority and minority classes. With recent advancements in generative models, OBI synthesis-based data augmentation has become a promising avenue to expand the sample size of minority classes. Unfortunately, current OBI datasets lack large-scale structure-aligned image pairs for generative model training. To address these problems, we first present the Oracle-P15K, a structure-aligned OBI dataset for OBI generation and denoising, consisting of 14,542 images infused with domain knowledge from OBI experts. Second, we propose a diffusion model-based pseudo OBI generator, called OBIDiff, to achieve realistic and controllable OBI generation. Given a clean glyph image and a target rubbing-style image, it can effectively transfer the noise style of the original rubbing to the glyph image. Extensive experiments on OBI downstream tasks and user preference studies show the effectiveness of the proposed Oracle-P15K dataset and demonstrate that OBIDiff can accurately preserve inherent glyph structures while transferring authentic rubbing styles effectively.
Abstract:Information theory and Shannon entropy are essential for quantifying irregularity in complex systems or signals. Recently, two-dimensional entropy methods, such as two-dimensional sample entropy, distribution entropy, and permutation entropy, have been proposed for analyzing 2D texture or image data. This paper introduces Gradient entropy (GradEn), an extension of slope entropy to 2D, which considers both symbolic patterns and amplitude information, enabling better feature extraction from image data. We evaluate GradEn with simulated data, including 2D colored noise, 2D mixed processes, and the logistic map. Results show the ability of GradEn to distinguish images with various characteristics while maintaining low computational cost. Real-world datasets, consist of texture, fault gear, and railway corrugation signals, demonstrate the superior performance of GradEn in classification tasks compared to other 2D entropy methods. In conclusion, GradEn is an effective tool for image characterization, offering a novel approach for image processing and recognition.
Abstract:Lempel-Ziv complexity (LZC) is a key measure for detecting the irregularity and complexity of nonlinear time series and has seen various improvements in recent decades. However, existing LZC-based metrics, such as Permutation Lempel-Ziv complexity (PLZC) and Dispersion-Entropy based Lempel-Ziv complexity (DELZC), focus mainly on patterns of independent embedding vectors, often overlooking the transition patterns within the time series. To address this gap, this paper introduces a novel LZC-based method called Bidirectional Transition Dispersion Entropy-based Lempel-Ziv complexity (BT-DELZC). Leveraging Markov chain theory, this method integrates a bidirectional transition network framework with DELZC to better capture dynamic signal information. Additionally, an improved hierarchical decomposition algorithm is used to extract features from various frequency components of the time series. The proposed BT-DELZC method is first evaluated through four simulated experiments, demonstrating its robustness and effectiveness in characterizing nonlinear time series. Additionally, two fault-bearing diagnosis experiments are conducted by combining the hierarchical BT-DELZC method with various classifiers from the machine learning domain. The results indicate that BT-DELZC achieves the highest accuracy across both datasets, significantly outperforming existing methods such as LZC, PLZC, and DELZC in extracting features related to fault bearings.