Abstract:Lung cancer remains one of the leading causes of morbidity and mortality worldwide, making early diagnosis critical for improving therapeutic outcomes and patient prognosis. Computer-aided diagnosis (CAD) systems, which analyze CT images, have proven effective in detecting and classifying pulmonary nodules, significantly enhancing the detection rate of early-stage lung cancer. Although traditional machine learning algorithms have been valuable, they exhibit limitations in handling complex sample data. The recent emergence of deep learning has revolutionized medical image analysis, driving substantial advancements in this field. This review focuses on recent progress in deep learning for pulmonary nodule detection, segmentation, and classification. Traditional machine learning methods, such as SVM and KNN, have shown limitations, paving the way for advanced approaches like Convolutional Neural Networks (CNN), Recurrent Neural Networks (RNN), and Generative Adversarial Networks (GAN). The integration of ensemble models and novel techniques is also discussed, emphasizing the latest developments in lung cancer diagnosis. Deep learning algorithms, combined with various analytical techniques, have markedly improved the accuracy and efficiency of pulmonary nodule analysis, surpassing traditional methods, particularly in nodule classification. Although challenges remain, continuous technological advancements are expected to further strengthen the role of deep learning in medical diagnostics, especially for early lung cancer detection and diagnosis. A comprehensive list of lung cancer detection models reviewed in this work is available at https://github.com/CaiGuoHui123/Awesome-Lung-Cancer-Detection
Abstract:Recent advances in diffusion models have opened new avenues for research into embodied AI agents and robotics. Despite significant achievements in complex robotic locomotion and skills, mobile manipulation-a capability that requires the coordination of navigation and manipulation-remains a challenge for generative AI techniques. This is primarily due to the high-dimensional action space, extended motion trajectories, and interactions with the surrounding environment. In this paper, we introduce M2Diffuser, a diffusion-based, scene-conditioned generative model that directly generates coordinated and efficient whole-body motion trajectories for mobile manipulation based on robot-centric 3D scans. M2Diffuser first learns trajectory-level distributions from mobile manipulation trajectories provided by an expert planner. Crucially, it incorporates an optimization module that can flexibly accommodate physical constraints and task objectives, modeled as cost and energy functions, during the inference process. This enables the reduction of physical violations and execution errors at each denoising step in a fully differentiable manner. Through benchmarking on three types of mobile manipulation tasks across over 20 scenes, we demonstrate that M2Diffuser outperforms state-of-the-art neural planners and successfully transfers the generated trajectories to a real-world robot. Our evaluations underscore the potential of generative AI to enhance the generalization of traditional planning and learning-based robotic methods, while also highlighting the critical role of enforcing physical constraints for safe and robust execution.
Abstract:We propose M^3Bench, a new benchmark of whole-body motion generation for mobile manipulation tasks. Given a 3D scene context, M^3Bench requires an embodied agent to understand its configuration, environmental constraints and task objectives, then generate coordinated whole-body motion trajectories for object rearrangement tasks. M^3Bench features 30k object rearrangement tasks across 119 diverse scenes, providing expert demonstrations generated by our newly developed M^3BenchMaker. This automatic data generation tool produces coordinated whole-body motion trajectories from high-level task instructions, requiring only basic scene and robot information. Our benchmark incorporates various task splits to assess generalization across different dimensions and leverages realistic physics simulation for trajectory evaluation. Through extensive experimental analyses, we reveal that state-of-the-art models still struggle with coordinated base-arm motion while adhering to environment-context and task-specific constraints, highlighting the need to develop new models that address this gap. Through M^3Bench, we aim to facilitate future robotics research towards more adaptive and capable mobile manipulation in diverse, real-world environments.
Abstract:Positive and negative association preidiction between gene and trait help studies for crops to perform complex physiological functions. The transcription and regulation activity of specific genes will be adjusted accordingly in different cell types, developmental stages, and physiological states to meet the needs of organisms. Determing gene-trait associations can resolve the mechanism of trait formation and benefit the improvement of crop yield and quality. There are the following two problems in obtaining the positive/negative associations between gene and trait: 1) High-throughput DNA/RNA sequencing and trait data collection are expensive and time-consuming due to the need to process large sample sizes; 2) experiments introduce both random and systematic errors, and, at the same time, calculations or predictions using software or models may produce noise. To address these two issues, we propose a Contrastive Signed Graph Diffusion Network, CSGDN, to learn robust node representations with fewer training samples to achieve higher link prediction accuracy. CSGDN employs a signed graph diffusion method to uncover the underlying regulatory associations between genes and traits. Then, stochastic perterbation strategies are used to create two views for both original and diffusive graphs. At last, a multi-view contrastive learning paradigm loss is designed to unify the node presentations learned from the two views to resist interference and reduce noise. We conduct experiments to validate the performance of CSGDN on three crop datasets: Gossypium hirsutum, Brassica napus, and Triticum turgidum. The results demonstrate that the proposed model outperforms state-of-the-art methods by up to 9.28% AUC for link sign prediction in G. hirsutum dataset.
Abstract:We propose M^3Bench, a new benchmark for whole-body motion generation for mobile manipulation tasks. Given a 3D scene context, M^3Bench requires an embodied agent to understand its configuration, environmental constraints and task objectives, then generate coordinated whole-body motion trajectories for object rearrangement tasks. M^3Bench features 30k object rearrangement tasks across 119 diverse scenes, providing expert demonstrations generated by our newly developed M^3BenchMaker. This automatic data generation tool produces coordinated whole-body motion trajectories from high-level task instructions, requiring only basic scene and robot information. Our benchmark incorporates various task splits to assess generalization across different dimensions and leverages realistic physics simulation for trajectory evaluation. Through extensive experimental analyses, we reveal that state-of-the-art models still struggle with coordinated base-arm motion while adhering to environment-context and task-specific constraints, highlighting the need to develop new models that address this gap. Through M^3Bench, we aim to facilitate future robotics research towards more adaptive and capable mobile manipulation in diverse, real-world environments.
Abstract:Representation learning on text-attributed graphs (TAGs) has attracted significant interest due to its wide-ranging real-world applications, particularly through Graph Neural Networks (GNNs). Traditional GNN methods focus on encoding the structural information of graphs, often using shallow text embeddings for node or edge attributes. This limits the model to understand the rich semantic information in the data and its reasoning ability for complex downstream tasks, while also lacking interpretability. With the rise of large language models (LLMs), an increasing number of studies are combining them with GNNs for graph representation learning and downstream tasks. While these approaches effectively leverage the rich semantic information in TAGs datasets, their main drawback is that they are only partially interpretable, which limits their application in critical fields. In this paper, we propose a verbalized graph representation learning (VGRL) method which is fully interpretable. In contrast to traditional graph machine learning models, which are usually optimized within a continuous parameter space, VGRL constrains this parameter space to be text description which ensures complete interpretability throughout the entire process, making it easier for users to understand and trust the decisions of the model. We conduct several studies to empirically evaluate the effectiveness of VGRL and we believe these method can serve as a stepping stone in graph representation learning.
Abstract:LLM-based agents have been widely applied as personal assistants, capable of memorizing information from user messages and responding to personal queries. However, there still lacks an objective and automatic evaluation on their memory capability, largely due to the challenges in constructing reliable questions and answers (QAs) according to user messages. In this paper, we propose MemSim, a Bayesian simulator designed to automatically construct reliable QAs from generated user messages, simultaneously keeping their diversity and scalability. Specifically, we introduce the Bayesian Relation Network (BRNet) and a causal generation mechanism to mitigate the impact of LLM hallucinations on factual information, facilitating the automatic creation of an evaluation dataset. Based on MemSim, we generate a dataset in the daily-life scenario, named MemDaily, and conduct extensive experiments to assess the effectiveness of our approach. We also provide a benchmark for evaluating different memory mechanisms in LLM-based agents with the MemDaily dataset. To benefit the research community, we have released our project at https://github.com/nuster1128/MemSim.
Abstract:The paper discusses signed graphs, which model friendly or antagonistic relationships using edges marked with positive or negative signs, focusing on the task of link sign prediction. While Signed Graph Neural Networks (SGNNs) have advanced, they face challenges like graph sparsity and unbalanced triangles. The authors propose using data augmentation (DA) techniques to address these issues, although many existing methods are not suitable for signed graphs due to a lack of side information. They highlight that the random DropEdge method, a rare DA approach applicable to signed graphs, does not enhance link sign prediction performance. In response, they introduce the Signed Graph Augmentation (SGA) framework, which includes a structure augmentation module to identify candidate edges and a strategy for selecting beneficial candidates, ultimately improving SGNN training. Experimental results show that SGA significantly boosts the performance of SGNN models, with a notable 32.3% improvement in F1-micro for SGCN on the Slashdot dataset.
Abstract:Pulmonary nodules are critical indicators for the early diagnosis of lung cancer, making their detection essential for timely treatment. However, traditional CT imaging methods suffered from cumbersome procedures, low detection rates, and poor localization accuracy. The subtle differences between pulmonary nodules and surrounding tissues in complex lung CT images, combined with repeated downsampling in feature extraction networks, often lead to missed or false detections of small nodules. Existing methods such as FPN, with its fixed feature fusion and limited receptive field, struggle to effectively overcome these issues. To address these challenges, our paper proposed three key contributions: Firstly, we proposed MSDet, a multiscale attention and receptive field network for detecting tiny pulmonary nodules. Secondly, we proposed the extended receptive domain (ERD) strategy to capture richer contextual information and reduce false positives caused by nodule occlusion. We also proposed the position channel attention mechanism (PCAM) to optimize feature learning and reduce multiscale detection errors, and designed the tiny object detection block (TODB) to enhance the detection of tiny nodules. Lastly, we conducted thorough experiments on the public LUNA16 dataset, achieving state-of-the-art performance, with an mAP improvement of 8.8% over the previous state-of-the-art method YOLOv8. These advancements significantly boosted detection accuracy and reliability, providing a more effective solution for early lung cancer diagnosis. The code will be available at https://github.com/CaiGuoHui123/MSDet
Abstract:Entity matching (EM) is the problem of determining whether two records refer to same real-world entity, which is crucial in data integration, e.g., for product catalogs or address databases. A major drawback of many EM approaches is their dependence on labelled examples. We thus focus on the challenging setting of zero-shot entity matching where no labelled examples are available for an unseen target dataset. Recently, large language models (LLMs) have shown promising results for zero-shot EM, but their low throughput and high deployment cost limit their applicability and scalability. We revisit the zero-shot EM problem with AnyMatch, a small language model fine-tuned in a transfer learning setup. We propose several novel data selection techniques to generate fine-tuning data for our model, e.g., by selecting difficult pairs to match via an AutoML filter, by generating additional attribute-level examples, and by controlling label imbalance in the data. We conduct an extensive evaluation of the prediction quality and deployment cost of our model, in a comparison to thirteen baselines on nine benchmark datasets. We find that AnyMatch provides competitive prediction quality despite its small parameter size: it achieves the second-highest F1 score overall, and outperforms several other approaches that employ models with hundreds of billions of parameters. Furthermore, our approach exhibits major cost benefits: the average prediction quality of AnyMatch is within 4.4% of the state-of-the-art method MatchGPT with the proprietary trillion-parameter model GPT-4, yet AnyMatch requires four orders of magnitude less parameters and incurs a 3,899 times lower inference cost (in dollars per 1,000 tokens).