Abstract:LLM-based agents have been widely applied as personal assistants, capable of memorizing information from user messages and responding to personal queries. However, there still lacks an objective and automatic evaluation on their memory capability, largely due to the challenges in constructing reliable questions and answers (QAs) according to user messages. In this paper, we propose MemSim, a Bayesian simulator designed to automatically construct reliable QAs from generated user messages, simultaneously keeping their diversity and scalability. Specifically, we introduce the Bayesian Relation Network (BRNet) and a causal generation mechanism to mitigate the impact of LLM hallucinations on factual information, facilitating the automatic creation of an evaluation dataset. Based on MemSim, we generate a dataset in the daily-life scenario, named MemDaily, and conduct extensive experiments to assess the effectiveness of our approach. We also provide a benchmark for evaluating different memory mechanisms in LLM-based agents with the MemDaily dataset. To benefit the research community, we have released our project at https://github.com/nuster1128/MemSim.
Abstract:Large language model (LLM) based agents have recently attracted much attention from the research and industry communities. Compared with original LLMs, LLM-based agents are featured in their self-evolving capability, which is the basis for solving real-world problems that need long-term and complex agent-environment interactions. The key component to support agent-environment interactions is the memory of the agents. While previous studies have proposed many promising memory mechanisms, they are scattered in different papers, and there lacks a systematical review to summarize and compare these works from a holistic perspective, failing to abstract common and effective designing patterns for inspiring future studies. To bridge this gap, in this paper, we propose a comprehensive survey on the memory mechanism of LLM-based agents. In specific, we first discuss ''what is'' and ''why do we need'' the memory in LLM-based agents. Then, we systematically review previous studies on how to design and evaluate the memory module. In addition, we also present many agent applications, where the memory module plays an important role. At last, we analyze the limitations of existing work and show important future directions. To keep up with the latest advances in this field, we create a repository at \url{https://github.com/nuster1128/LLM_Agent_Memory_Survey}.
Abstract:Personalized recommendation serves as a ubiquitous channel for users to discover information or items tailored to their interests. However, traditional recommendation models primarily rely on unique IDs and categorical features for user-item matching, potentially overlooking the nuanced essence of raw item contents across multiple modalities such as text, image, audio, and video. This underutilization of multimodal data poses a limitation to recommender systems, especially in multimedia services like news, music, and short-video platforms. The recent advancements in pretrained multimodal models offer new opportunities and challenges in developing content-aware recommender systems. This survey seeks to provide a comprehensive exploration of the latest advancements and future trajectories in multimodal pretraining, adaptation, and generation techniques, as well as their applications to recommender systems. Furthermore, we discuss open challenges and opportunities for future research in this domain. We hope that this survey, along with our tutorial materials, will inspire further research efforts to advance this evolving landscape.
Abstract:Over recent years, news recommender systems have gained significant attention in both academia and industry, emphasizing the need for a standardized benchmark to evaluate and compare the performance of these systems. Concurrently, Green AI advocates for reducing the energy consumption and environmental impact of machine learning. To address these concerns, we introduce the first Green AI benchmarking framework for news recommendation, known as GreenRec, and propose a metric for assessing the tradeoff between recommendation accuracy and efficiency. Our benchmark encompasses 30 base models and their variants, covering traditional end-to-end training paradigms as well as our proposed efficient only-encode-once (OLEO) paradigm. Through experiments consuming 2000 GPU hours, we observe that the OLEO paradigm achieves competitive accuracy compared to state-of-the-art end-to-end paradigms and delivers up to a 2992\% improvement in sustainability metrics.
Abstract:Estimating conditional average treatment effect from observational data is highly challenging due to the existence of treatment selection bias. Prevalent methods mitigate this issue by aligning distributions of different treatment groups in the latent space. However, there are two critical problems that these methods fail to address: (1) mini-batch sampling effects (MSE), which causes misalignment in non-ideal mini-batches with outcome imbalance and outliers; (2) unobserved confounder effects (UCE), which results in inaccurate discrepancy calculation due to the neglect of unobserved confounders. To tackle these problems, we propose a principled approach named Entire Space CounterFactual Regression (ESCFR), which is a new take on optimal transport in the context of causality. Specifically, based on the framework of stochastic optimal transport, we propose a relaxed mass-preserving regularizer to address the MSE issue and design a proximal factual outcome regularizer to handle the UCE issue. Extensive experiments demonstrate that our proposed ESCFR can successfully tackle the treatment selection bias and achieve significantly better performance than state-of-the-art methods.
Abstract:Label scarcity in a graph is frequently encountered in real-world applications due to the high cost of data labeling. To this end, semi-supervised domain adaptation (SSDA) on graphs aims to leverage the knowledge of a labeled source graph to aid in node classification on a target graph with limited labels. SSDA tasks need to overcome the domain gap between the source and target graphs. However, to date, this challenging research problem has yet to be formally considered by the existing approaches designed for cross-graph node classification. To tackle the SSDA problem on graphs, a novel method called SemiGCL is proposed, which benefits from graph contrastive learning and minimax entropy training. SemiGCL generates informative node representations by contrasting the representations learned from a graph's local and global views. Additionally, SemiGCL is adversarially optimized with the entropy loss of unlabeled target nodes to reduce domain divergence. Experimental results on benchmark datasets demonstrate that SemiGCL outperforms the state-of-the-art baselines on the SSDA tasks.
Abstract:Large pretrained language models (PLM) have become de facto news encoders in modern news recommender systems, due to their strong ability in comprehending textual content. These huge Transformer-based architectures, when finetuned on recommendation tasks, can greatly improve news recommendation performance. However, the PLM-based pretrain-finetune framework incurs high computational cost and energy consumption, primarily due to the extensive redundant processing of news encoding during each training epoch. In this paper, we propose the ``Only Encode Once'' framework for news recommendation (OLEO), by decoupling news representation learning from downstream recommendation task learning. The decoupled design makes content-based news recommender as green and efficient as id-based ones, leading to great reduction in computational cost and training resources. Extensive experiments show that our OLEO framework can reduce carbon emissions by up to 13 times compared with the state-of-the-art pretrain-finetune framework and maintain a competitive or even superior performance level. The source code is released for reproducibility.
Abstract:Outlier exposure (OE) is powerful in out-of-distribution (OOD) detection, enhancing detection capability via model fine-tuning with surrogate OOD data. However, surrogate data typically deviate from test OOD data. Thus, the performance of OE, when facing unseen OOD data, can be weakened. To address this issue, we propose a novel OE-based approach that makes the model perform well for unseen OOD situations, even for unseen OOD cases. It leads to a min-max learning scheme -- searching to synthesize OOD data that leads to worst judgments and learning from such OOD data for uniform performance in OOD detection. In our realization, these worst OOD data are synthesized by transforming original surrogate ones. Specifically, the associated transform functions are learned implicitly based on our novel insight that model perturbation leads to data transformation. Our methodology offers an efficient way of synthesizing OOD data, which can further benefit the detection model, besides the surrogate OOD data. We conduct extensive experiments under various OOD detection setups, demonstrating the effectiveness of our method against its advanced counterparts.
Abstract:Explainable recommendation has attracted much attention from the industry and academic communities. It has shown great potential for improving the recommendation persuasiveness, informativeness and user satisfaction. Despite a lot of promising explainable recommender models have been proposed in the past few years, the evaluation strategies of these models suffer from several limitations. For example, the explanation ground truths are not labeled by real users, the explanations are mostly evaluated based on only one aspect and the evaluation strategies can be hard to unify. To alleviate the above problems, we propose to build an explainable recommendation dataset with multi-aspect real user labeled ground truths. In specific, we firstly develop a video recommendation platform, where a series of questions around the recommendation explainability are carefully designed. Then, we recruit about 3000 users with different backgrounds to use the system, and collect their behaviors and feedback to our questions. In this paper, we detail the construction process of our dataset and also provide extensive analysis on its characteristics. In addition, we develop a library, where ten well-known explainable recommender models are implemented in a unified framework. Based on this library, we build several benchmarks for different explainable recommendation tasks. At last, we present many new opportunities brought by our dataset, which are expected to shed some new lights to the explainable recommendation field. Our dataset, library and the related documents have been released at https://reasoner2023.github.io/.
Abstract:Post-click conversion rate (CVR) prediction is an essential task for discovering user interests and increasing platform revenues in a range of industrial applications. One of the most challenging problems of this task is the existence of severe selection bias caused by the inherent self-selection behavior of users and the item selection process of systems. Currently, doubly robust (DR) learning approaches achieve the state-of-the-art performance for debiasing CVR prediction. However, in this paper, by theoretically analyzing the bias, variance and generalization bounds of DR methods, we find that existing DR approaches may have poor generalization caused by inaccurate estimation of propensity scores and imputation errors, which often occur in practice. Motivated by such analysis, we propose a generalized learning framework that not only unifies existing DR methods, but also provides a valuable opportunity to develop a series of new debiasing techniques to accommodate different application scenarios. Based on the framework, we propose two new DR methods, namely DR-BIAS and DR-MSE. DR-BIAS directly controls the bias of DR loss, while DR-MSE balances the bias and variance flexibly, which achieves better generalization performance. In addition, we propose a novel tri-level joint learning optimization method for DR-MSE in CVR prediction, and an efficient training algorithm correspondingly. We conduct extensive experiments on both real-world and semi-synthetic datasets, which validate the effectiveness of our proposed methods.