Abstract:Three-dimensional (3D) point clouds are becoming more and more popular for representing 3D objects and scenes. Due to limited network bandwidth, efficient compression of 3D point clouds is crucial. To tackle this challenge, the Moving Picture Experts Group (MPEG) is actively developing the Geometry-based Point Cloud Compression (G-PCC) standard, incorporating innovative methods to optimize compression, such as the Region-Adaptive Hierarchical Transform (RAHT) nestled within a layer-by-layer octree-tree structure. Nevertheless, a notable problem still exists in RAHT, i.e., the proportion of zero residuals in the last few RAHT layers leads to unnecessary bitrate consumption. To address this problem, we propose an adaptive skip coding method for RAHT, which adaptively determines whether to encode the residuals of the last several layers or not, thereby improving the coding efficiency. In addition, we propose a rate-distortion cost calculation method associated with an adaptive Lagrange multiplier. Experimental results demonstrate that the proposed method achieves average Bj{\o}ntegaard rate improvements of -3.50%, -5.56%, and -4.18% for the Luma, Cb, and Cr components, respectively, on dynamic point clouds, when compared with the state-of-the-art G-PCC reference software under the common test conditions recommended by MPEG.
Abstract:Recent advancements in spoken dialogue models, exemplified by systems like GPT-4o, have captured significant attention in the speech domain. Compared to traditional three-tier cascaded spoken dialogue models that comprise speech recognition (ASR), large language models (LLMs), and text-to-speech (TTS), modern spoken dialogue models exhibit greater intelligence. These advanced spoken dialogue models not only comprehend audio, music, and other speech-related features, but also capture stylistic and timbral characteristics in speech. Moreover, they generate high-quality, multi-turn speech responses with low latency, enabling real-time interaction through simultaneous listening and speaking capability. Despite the progress in spoken dialogue systems, there is a lack of comprehensive surveys that systematically organize and analyze these systems and the underlying technologies. To address this, we have first compiled existing spoken dialogue systems in the chronological order and categorized them into the cascaded and end-to-end paradigms. We then provide an in-depth overview of the core technologies in spoken dialogue models, covering aspects such as speech representation, training paradigm, streaming, duplex, and interaction capabilities. Each section discusses the limitations of these technologies and outlines considerations for future research. Additionally, we present a thorough review of relevant datasets, evaluation metrics, and benchmarks from the perspectives of training and evaluating spoken dialogue systems. We hope this survey will contribute to advancing both academic research and industrial applications in the field of spoken dialogue systems. The related material is available at https://github.com/jishengpeng/WavChat.
Abstract:The scaling up has brought tremendous success in the fields of vision and language in recent years. When it comes to audio, however, researchers encounter a major challenge in scaling up the training data, as most natural audio contains diverse interfering signals. To address this limitation, we introduce Omni-modal Sound Separation (OmniSep), a novel framework capable of isolating clean soundtracks based on omni-modal queries, encompassing both single-modal and multi-modal composed queries. Specifically, we introduce the Query-Mixup strategy, which blends query features from different modalities during training. This enables OmniSep to optimize multiple modalities concurrently, effectively bringing all modalities under a unified framework for sound separation. We further enhance this flexibility by allowing queries to influence sound separation positively or negatively, facilitating the retention or removal of specific sounds as desired. Finally, OmniSep employs a retrieval-augmented approach known as Query-Aug, which enables open-vocabulary sound separation. Experimental evaluations on MUSIC, VGGSOUND-CLEAN+, and MUSIC-CLEAN+ datasets demonstrate effectiveness of OmniSep, achieving state-of-the-art performance in text-, image-, and audio-queried sound separation tasks. For samples and further information, please visit the demo page at \url{https://omnisep.github.io/}.
Abstract:The rapid advancement of text-to-image (T2I) diffusion models has enabled them to generate unprecedented results from given texts. However, as text inputs become longer, existing encoding methods like CLIP face limitations, and aligning the generated images with long texts becomes challenging. To tackle these issues, we propose LongAlign, which includes a segment-level encoding method for processing long texts and a decomposed preference optimization method for effective alignment training. For segment-level encoding, long texts are divided into multiple segments and processed separately. This method overcomes the maximum input length limits of pretrained encoding models. For preference optimization, we provide decomposed CLIP-based preference models to fine-tune diffusion models. Specifically, to utilize CLIP-based preference models for T2I alignment, we delve into their scoring mechanisms and find that the preference scores can be decomposed into two components: a text-relevant part that measures T2I alignment and a text-irrelevant part that assesses other visual aspects of human preference. Additionally, we find that the text-irrelevant part contributes to a common overfitting problem during fine-tuning. To address this, we propose a reweighting strategy that assigns different weights to these two components, thereby reducing overfitting and enhancing alignment. After fine-tuning $512 \times 512$ Stable Diffusion (SD) v1.5 for about 20 hours using our method, the fine-tuned SD outperforms stronger foundation models in T2I alignment, such as PixArt-$\alpha$ and Kandinsky v2.2. The code is available at https://github.com/luping-liu/LongAlign.
Abstract:Talking face generation (TFG) aims to animate a target identity's face to create realistic talking videos. Personalized TFG is a variant that emphasizes the perceptual identity similarity of the synthesized result (from the perspective of appearance and talking style). While previous works typically solve this problem by learning an individual neural radiance field (NeRF) for each identity to implicitly store its static and dynamic information, we find it inefficient and non-generalized due to the per-identity-per-training framework and the limited training data. To this end, we propose MimicTalk, the first attempt that exploits the rich knowledge from a NeRF-based person-agnostic generic model for improving the efficiency and robustness of personalized TFG. To be specific, (1) we first come up with a person-agnostic 3D TFG model as the base model and propose to adapt it into a specific identity; (2) we propose a static-dynamic-hybrid adaptation pipeline to help the model learn the personalized static appearance and facial dynamic features; (3) To generate the facial motion of the personalized talking style, we propose an in-context stylized audio-to-motion model that mimics the implicit talking style provided in the reference video without information loss by an explicit style representation. The adaptation process to an unseen identity can be performed in 15 minutes, which is 47 times faster than previous person-dependent methods. Experiments show that our MimicTalk surpasses previous baselines regarding video quality, efficiency, and expressiveness. Source code and video samples are available at https://mimictalk.github.io .
Abstract:Recently, human-computer interaction with various modalities has shown promising applications, like GPT-4o and Gemini. Given the foundational role of multimodal joint representation in understanding and generation pipelines, high-quality omni joint representations would be a step toward co-processing more diverse multimodal information. In this work, we present OmniBind, large-scale multimodal joint representation models ranging in scale from 7 billion to 30 billion parameters, which support 3D, audio, image, and language inputs. Due to the scarcity of data pairs across all modalities, instead of training large models from scratch, we propose remapping and binding the spaces of various pre-trained specialist models together. This approach enables "scaling up" by indirectly increasing the model parameters and the amount of seen data. To effectively integrate various spaces, we dynamically assign weights to different spaces by learning routers with two objectives: cross-modal overall alignment and language representation decoupling. Notably, since binding and routing spaces both only require lightweight networks, OmniBind is extremely training-efficient. Learning the largest 30B model requires merely unpaired unimodal data and approximately 3 days on a single 8-4090 node. Extensive experiments demonstrate the versatility and superiority of OmniBind as an omni representation model, highlighting its great potential for diverse applications, such as any-query and composable multimodal understanding.
Abstract:Video-to-audio (V2A) generation aims to synthesize content-matching audio from silent video, and it remains challenging to build V2A models with high generation quality, efficiency, and visual-audio temporal synchrony. We propose Frieren, a V2A model based on rectified flow matching. Frieren regresses the conditional transport vector field from noise to spectrogram latent with straight paths and conducts sampling by solving ODE, outperforming autoregressive and score-based models in terms of audio quality. By employing a non-autoregressive vector field estimator based on a feed-forward transformer and channel-level cross-modal feature fusion with strong temporal alignment, our model generates audio that is highly synchronized with the input video. Furthermore, through reflow and one-step distillation with guided vector field, our model can generate decent audio in a few, or even only one sampling step. Experiments indicate that Frieren achieves state-of-the-art performance in both generation quality and temporal alignment on VGGSound, with alignment accuracy reaching 97.22%, and 6.2% improvement in inception score over the strong diffusion-based baseline. Audio samples are available at http://frieren-v2a.github.io .
Abstract:Unified multi-model representation spaces are the foundation of multimodal understanding and generation. However, the billions of model parameters and catastrophic forgetting problems make it challenging to further enhance pre-trained unified spaces. In this work, we propose FreeBind, an idea that treats multimodal representation spaces as basic units, and freely augments pre-trained unified space by integrating knowledge from extra expert spaces via "space bonds". Specifically, we introduce two kinds of basic space bonds: 1) Space Displacement Bond and 2) Space Combination Bond. Based on these basic bonds, we design Complex Sequential & Parallel Bonds to effectively integrate multiple spaces simultaneously. Benefiting from the modularization concept, we further propose a coarse-to-fine customized inference strategy to flexibly adjust the enhanced unified space for different purposes. Experimentally, we bind ImageBind with extra image-text and audio-text expert spaces, resulting in three main variants: ImageBind++, InternVL_IB, and InternVL_IB++. These resulting spaces outperform ImageBind on 5 audio-image-text downstream tasks across 9 datasets. Moreover, via customized inference, it even surpasses the advanced audio-text and image-text expert spaces.
Abstract:Unified multi-model representation spaces are the foundation of multimodal understanding and generation. However, the billions of model parameters and catastrophic forgetting problems make it challenging to further enhance pre-trained unified spaces. In this work, we propose Molecule-Space, an idea that treats multimodal representation spaces as "molecules", and augments pre-trained unified space by integrating knowledge from extra expert spaces via "molecules space reactions". Specifically, we introduce two kinds of basic space reactions: 1) Space Displacement Reaction and 2) Space Combination Reaction. Based on these defined basic reactions, we design Complex Sequential & Parallel Reactions to effectively integrate multiple spaces simultaneously. Benefiting from the modularization concept, we further propose a coarse-to-fine customized inference strategy to flexibly adjust the enhanced unified space for different purposes. Experimentally, we fuse the audio-image-text space of ImageBind with the image-text and audio-text expert spaces. The resulting space outperforms ImageBind on 5 downstream tasks across 9 datasets. Moreover, via customized inference, it even surpasses the used image-text and audio-text expert spaces.
Abstract:Direct speech-to-speech translation achieves high-quality results through the introduction of discrete units obtained from self-supervised learning. This approach circumvents delays and cascading errors associated with model cascading. However, talking head translation, converting audio-visual speech (i.e., talking head video) from one language into another, still confronts several challenges compared to audio speech: (1) Existing methods invariably rely on cascading, synthesizing via both audio and text, resulting in delays and cascading errors. (2) Talking head translation has a limited set of reference frames. If the generated translation exceeds the length of the original speech, the video sequence needs to be supplemented by repeating frames, leading to jarring video transitions. In this work, we propose a model for talking head translation, \textbf{TransFace}, which can directly translate audio-visual speech into audio-visual speech in other languages. It consists of a speech-to-unit translation model to convert audio speech into discrete units and a unit-based audio-visual speech synthesizer, Unit2Lip, to re-synthesize synchronized audio-visual speech from discrete units in parallel. Furthermore, we introduce a Bounded Duration Predictor, ensuring isometric talking head translation and preventing duplicate reference frames. Experiments demonstrate that our proposed Unit2Lip model significantly improves synchronization (1.601 and 0.982 on LSE-C for the original and generated audio speech, respectively) and boosts inference speed by a factor of 4.35 on LRS2. Additionally, TransFace achieves impressive BLEU scores of 61.93 and 47.55 for Es-En and Fr-En on LRS3-T and 100% isochronous translations.