Abstract:Current multimodal large language models (MLLMs) struggle with fine-grained or precise understanding of visuals though they give comprehensive perception and reasoning in a spectrum of vision applications. Recent studies either develop tool-using or unify specific visual tasks into the autoregressive framework, often at the expense of overall multimodal performance. To address this issue and enhance MLLMs with visual tasks in a scalable fashion, we propose Task Preference Optimization (TPO), a novel method that utilizes differentiable task preferences derived from typical fine-grained visual tasks. TPO introduces learnable task tokens that establish connections between multiple task-specific heads and the MLLM. By leveraging rich visual labels during training, TPO significantly enhances the MLLM's multimodal capabilities and task-specific performance. Through multi-task co-training within TPO, we observe synergistic benefits that elevate individual task performance beyond what is achievable through single-task training methodologies. Our instantiation of this approach with VideoChat and LLaVA demonstrates an overall 14.6% improvement in multimodal performance compared to baseline models. Additionally, MLLM-TPO demonstrates robust zero-shot capabilities across various tasks, performing comparably to state-of-the-art supervised models. The code will be released at https://github.com/OpenGVLab/TPO
Abstract:Multimodal Large Language Models (MLLMs) have demonstrated impressive performance in short video understanding. However, understanding long-form videos still remains challenging for MLLMs. This paper proposes TimeSuite, a collection of new designs to adapt the existing short-form video MLLMs for long video understanding, including a simple yet efficient framework to process long video sequence, a high-quality video dataset for grounded tuning of MLLMs, and a carefully-designed instruction tuning task to explicitly incorporate the grounding supervision in the traditional QA format. Specifically, based on VideoChat, we propose our long-video MLLM, coined as VideoChat-T, by implementing a token shuffling to compress long video tokens and introducing Temporal Adaptive Position Encoding (TAPE) to enhance the temporal awareness of visual representation. Meanwhile, we introduce the TimePro, a comprehensive grounding-centric instruction tuning dataset composed of 9 tasks and 349k high-quality grounded annotations. Notably, we design a new instruction tuning task type, called Temporal Grounded Caption, to peform detailed video descriptions with the corresponding time stamps prediction. This explicit temporal location prediction will guide MLLM to correctly attend on the visual content when generating description, and thus reduce the hallucination risk caused by the LLMs. Experimental results demonstrate that our TimeSuite provides a successful solution to enhance the long video understanding capability of short-form MLLM, achieving improvement of 5.6% and 6.8% on the benchmarks of Egoschema and VideoMME, respectively. In addition, VideoChat-T exhibits robust zero-shot temporal grounding capabilities, significantly outperforming the existing state-of-the-art MLLMs. After fine-tuning, it performs on par with the traditional supervised expert models.
Abstract:Online platforms often incentivize consumers to improve user engagement and platform revenue. Since different consumers might respond differently to incentives, individual-level budget allocation is an essential task in marketing campaigns. Recent advances in this field often address the budget allocation problem using a two-stage paradigm: the first stage estimates the individual-level treatment effects using causal inference algorithms, and the second stage invokes integer programming techniques to find the optimal budget allocation solution. Since the objectives of these two stages might not be perfectly aligned, such a two-stage paradigm could hurt the overall marketing effectiveness. In this paper, we propose a novel end-to-end framework to directly optimize the business goal under budget constraints. Our core idea is to construct a regularizer to represent the marketing goal and optimize it efficiently using gradient estimation techniques. As such, the obtained models can learn to maximize the marketing goal directly and precisely. We extensively evaluate our proposed method in both offline and online experiments, and experimental results demonstrate that our method outperforms current state-of-the-art methods. Our proposed method is currently deployed to allocate marketing budgets for hundreds of millions of users on a short video platform and achieves significant business goal improvements. Our code will be publicly available.
Abstract:For visual object recognition tasks, the illumination variations can cause distinct changes in object appearance and thus confuse the deep neural network based recognition models. Especially for some rare illumination conditions, collecting sufficient training samples could be time-consuming and expensive. To solve this problem, in this paper we propose a novel neural network architecture called Separating-Illumination Network (Sill-Net). Sill-Net learns to separate illumination features from images, and then during training we augment training samples with these separated illumination features in the feature space. Experimental results demonstrate that our approach outperforms current state-of-the-art methods in several object classification benchmarks.
Abstract:The idea of unfolding iterative algorithms as deep neural networks has been widely applied in solving sparse coding problems, providing both solid theoretical analysis in convergence rate and superior empirical performance. However, for sparse nonlinear regression problems, a similar idea is rarely exploited due to the complexity of nonlinearity. In this work, we bridge this gap by introducing the Nonlinear Learned Iterative Shrinkage Thresholding Algorithm (NLISTA), which can attain a linear convergence under suitable conditions. Experiments on synthetic data corroborate our theoretical results and show our method outperforms state-of-the-art methods.
Abstract:Estimated time of arrival (ETA) is one of the most important services in intelligent transportation systems and becomes a challenging spatial-temporal (ST) data mining task in recent years. Nowadays, deep learning based methods, specifically recurrent neural networks (RNN) based ones are adapted to model the ST patterns from massive data for ETA and become the state-of-the-art. However, RNN is suffering from slow training and inference speed, as its structure is unfriendly to parallel computing. To solve this problem, we propose a novel, brief and effective framework mainly based on feed-forward network (FFN) for ETA, FFN with Multi-factor self-Attention (FMA-ETA). The novel Multi-factor self-attention mechanism is proposed to deal with different category features and aggregate the information purposefully. Extensive experimental results on the real-world vehicle travel dataset show FMA-ETA is competitive with state-of-the-art methods in terms of the prediction accuracy with significantly better inference speed.
Abstract:The tremendous recent success of deep neural networks (DNNs) has sparked a surge of interest in understanding their predictive ability. Unlike the human visual system which is able to generalize robustly and learn with little supervision, DNNs normally require a massive amount of data to learn new concepts. In addition, research works also show that DNNs are vulnerable to adversarial examples-maliciously generated images which seem perceptually similar to the natural ones but are actually formed to fool learning models, which means the models have problem generalizing to unseen data with certain type of distortions. In this paper, we analyze the generalization ability of DNNs comprehensively and attempt to improve it from a geometric point of view. We propose adversarial margin maximization (AMM), a learning-based regularization which exploits an adversarial perturbation as a proxy. It encourages a large margin in the input space, just like the support vector machines. With a differentiable formulation of the perturbation, we train the regularized DNNs simply through back-propagation in an end-to-end manner. Experimental results on various datasets (including MNIST, CIFAR-10/100, SVHN and ImageNet) and different DNN architectures demonstrate the superiority of our method over previous state-of-the-arts. Code and models for reproducing our results will be made publicly available.
Abstract:Unlike the white-box counterparts that are widely studied and readily accessible, adversarial examples in black-box settings are generally more Herculean on account of the difficulty of estimating gradients. Many methods achieve the task by issuing numerous queries to target classification systems, which makes the whole procedure costly and suspicious to the systems. In this paper, we aim at reducing the query complexity of black-box attacks in this category. We propose to exploit gradients of a few reference models which arguably span some promising search subspaces. Experimental results show that, in comparison with the state-of-the-arts, our method can gain up to 2x and 4x reductions in the requisite mean and medium numbers of queries with much lower failure rates even if the reference models are trained on a small and inadequate dataset disjoint to the one for training the victim model. Code and models for reproducing our results will be made publicly available.
Abstract:Despite the efficacy on a variety of computer vision tasks, deep neural networks (DNNs) are vulnerable to adversarial attacks, limiting their applications in security-critical systems. Recent works have shown the possibility of generating imperceptibly perturbed image inputs (a.k.a., adversarial examples) to fool well-trained DNN classifiers into making arbitrary predictions. To address this problem, we propose a training recipe named "deep defense". Our core idea is to integrate an adversarial perturbation-based regularizer into the classification objective, such that the obtained models learn to resist potential attacks, directly and precisely. The whole optimization problem is solved just like training a recursive network. Experimental results demonstrate that our method outperforms training with adversarial/Parseval regularizations by large margins on various datasets (including MNIST, CIFAR-10 and ImageNet) and different DNN architectures. Code and models for reproducing our results will be made publicly available.
Abstract:Recurrent neural network (RNN)'s architecture is a key factor influencing its performance. We propose algorithms to optimize hidden sizes under running time constraint. We convert the discrete optimization into a subset selection problem. By novel transformations, the objective function becomes submodular and constraint becomes supermodular. A greedy algorithm with bounds is suggested to solve the transformed problem. And we show how transformations influence the bounds. To speed up optimization, surrogate functions are proposed which balance exploration and exploitation. Experiments show that our algorithms can find more accurate models or faster models than manually tuned state-of-the-art and random search. We also compare popular RNN architectures using our algorithms.