Kuaishou Technology
Abstract:Multimodal recommendation systems typically integrates user behavior with multimodal data from items, thereby capturing more accurate user preferences. Concurrently, with the rise of large models (LMs), multimodal recommendation is increasingly leveraging their strengths in semantic understanding and contextual reasoning. However, LM representations are inherently optimized for general semantic tasks, while recommendation models rely heavily on sparse user/item unique identity (ID) features. Existing works overlook the fundamental representational divergence between large models and recommendation systems, resulting in incompatible multimodal representations and suboptimal recommendation performance. To bridge this gap, we propose RecGOAT, a novel yet simple dual semantic alignment framework for LLM-enhanced multimodal recommendation, which offers theoretically guaranteed alignment capability. RecGOAT first employs graph attention networks to enrich collaborative semantics by modeling item-item, user-item, and user-user relationships, leveraging user/item LM representations and interaction history. Furthermore, we design a dual-granularity progressive multimodality-ID alignment framework, which achieves instance-level and distribution-level semantic alignment via cross-modal contrastive learning (CMCL) and optimal adaptive transport (OAT), respectively. Theoretically, we demonstrate that the unified representations derived from our alignment framework exhibit superior semantic consistency and comprehensiveness. Extensive experiments on three public benchmarks show that our RecGOAT achieves state-of-the-art performance, empirically validating our theoretical insights. Additionally, the deployment on a large-scale online advertising platform confirms the model's effectiveness and scalability in industrial recommendation scenarios. Code available at https://github.com/6lyc/RecGOAT-LLM4Rec.
Abstract:Multimodal recommendation aims to enhance user preference modeling by leveraging rich item content such as images and text. Yet dominant systems fuse modalities in the spatial domain, obscuring the frequency structure of signals and amplifying misalignment and redundancy. We adopt a spectral information-theoretic view and show that, under an orthogonal transform that approximately block-diagonalizes bandwise covariances, the Gaussian Information Bottleneck objective decouples across frequency bands, providing a principled basis for separate-then-fuse paradigm. Building on this foundation, we propose FITMM, a Frequency-aware Information-Theoretic framework for multimodal recommendation. FITMM constructs graph-enhanced item representations, performs modality-wise spectral decomposition to obtain orthogonal bands, and forms lightweight within-band multimodal components. A residual, task-adaptive gate aggregates bands into the final representation. To control redundancy and improve generalization, we regularize training with a frequency-domain IB term that allocates capacity across bands (Wiener-like shrinkage with shut-off of weak bands). We further introduce a cross-modal spectral consistency loss that aligns modalities within each band. The model is jointly optimized with the standard recommendation loss. Extensive experiments on three real-world datasets demonstrate that FITMM consistently and significantly outperforms advanced baselines.
Abstract:Decision Transformer (DT) shows promise for generative auto-bidding by capturing temporal dependencies, but suffers from two critical limitations: insufficient cross-correlation modeling among state, action, and return-to-go (RTG) sequences, and indiscriminate learning of optimal/suboptimal behaviors. To address these, we propose C2, a novel framework enhancing DT with two core innovations: (1) a Cross Learning Block (CLB) via cross-attention to strengthen inter-sequence correlation modeling; (2) a Constraint-aware Loss (CL) incorporating budget and Cost-Per-Acquisition (CPA) constraints for selective learning of optimal trajectories. Extensive offline evaluations on the AuctionNet dataset demonstrate consistent performance gains (up to 3.2% over state-of-the-art method) across diverse budget settings; ablation studies verify the complementary synergy of CLB and CL, confirming C2's superiority in auto-bidding. The code for reproducing our results is available at: https://github.com/Dingjinren/C2.
Abstract:Recent progress in text-to-image (T2I) diffusion models (DMs) has enabled high-quality visual synthesis from diverse textual prompts. Yet, most existing T2I DMs, even those equipped with large language model (LLM)-based text encoders, remain text-pixel mappers -- they employ LLMs merely as text encoders, without leveraging their inherent reasoning capabilities to infer what should be visually depicted given the textual prompt. To move beyond such literal generation, we propose the think-then-generate (T2G) paradigm, where the LLM-based text encoder is encouraged to reason about and rewrite raw user prompts; the states of the rewritten prompts then serve as diffusion conditioning. To achieve this, we first activate the think-then-rewrite pattern of the LLM encoder with a lightweight supervised fine-tuning process. Subsequently, the LLM encoder and diffusion backbone are co-optimized to ensure faithful reasoning about the context and accurate rendering of the semantics via Dual-GRPO. In particular, the text encoder is reinforced using image-grounded rewards to infer and recall world knowledge, while the diffusion backbone is pushed to produce semantically consistent and visually coherent images. Experiments show substantial improvements in factual consistency, semantic alignment, and visual realism across reasoning-based image generation and editing benchmarks, achieving 0.79 on WISE score, nearly on par with GPT-4. Our results constitute a promising step toward next-generation unified models with reasoning, expression, and demonstration capacities.




Abstract:Recent advancements in large language model-based recommendation systems often represent items as text or semantic IDs and generate recommendations in an auto-regressive manner. However, due to the left-to-right greedy decoding strategy and the unidirectional logical flow, such methods often fail to produce globally optimal recommendations. In contrast, human reasoning does not follow a rigid left-to-right sequence. Instead, it often begins with keywords or intuitive insights, which are then refined and expanded. Inspired by this fact, we propose MindRec, a diffusion-driven coarse-to-fine generative paradigm that emulates human thought processes. Built upon a diffusion language model, MindRec departs from auto-regressive generation by leveraging a masked diffusion process to reconstruct items in a flexible, non-sequential manner. Particularly, our method first generates key tokens that reflect user preferences, and then expands them into the complete item, enabling adaptive and human-like generation. To further emulate the structured nature of human decision-making, we organize items into a hierarchical category tree. This structure guides the model to first produce the coarse-grained category and then progressively refine its selection through finer-grained subcategories before generating the specific item. To mitigate the local optimum problem inherent in greedy decoding, we design a novel beam search algorithm, Diffusion Beam Search, tailored for our mind-inspired generation paradigm. Experimental results demonstrate that MindRec yields a 9.5\% average improvement in top-1 accuracy over state-of-the-art methods, highlighting its potential to enhance recommendation performance. The implementation is available via https://github.com/Mr-Peach0301/MindRec.
Abstract:Large Language Models (LLMs) demonstrate significant advantages in leveraging structured world knowledge and multi-step reasoning capabilities. However, fundamental challenges arise when transforming LLMs into real-world recommender systems due to semantic and behavioral misalignment. To bridge this gap, we propose Align$^3$GR, a novel framework that unifies token-level, behavior modeling-level, and preference-level alignment. Our approach introduces: Dual tokenization fusing user-item semantic and collaborative signals. Enhanced behavior modeling with bidirectional semantic alignment. Progressive DPO strategy combining self-play (SP-DPO) and real-world feedback (RF-DPO) for dynamic preference adaptation. Experiments show Align$^3$GR outperforms the SOTA baseline by +17.8% in Recall@10 and +20.2% in NDCG@10 on the public dataset, with significant gains in online A/B tests and full-scale deployment on an industrial large-scale recommendation platform.




Abstract:Restoring 3D scenes captured under low-light con- ditions remains a fundamental yet challenging problem. Most existing approaches depend on precomputed camera poses and scene-specific optimization, which greatly restricts their scala- bility to dynamic real-world environments. To overcome these limitations, we introduce Lumos3D, a generalizable pose-free framework for 3D low-light scene restoration. Trained once on a single dataset, Lumos3D performs inference in a purely feed- forward manner, directly restoring illumination and structure from unposed, low-light multi-view images without any per- scene training or optimization. Built upon a geometry-grounded backbone, Lumos3D reconstructs a normal-light 3D Gaussian representation that restores illumination while faithfully pre- serving structural details. During training, a cross-illumination distillation scheme is employed, where the teacher network is distilled on normal-light ground truth to transfer accurate geometric information, such as depth, to the student model. A dedicated Lumos loss is further introduced to promote photomet- ric consistency within the reconstructed 3D space. Experiments on real-world datasets demonstrate that Lumos3D achieves high- fidelity low-light 3D scene restoration with accurate geometry and strong generalization to unseen cases. Furthermore, the framework naturally extends to handle over-exposure correction, highlighting its versatility for diverse lighting restoration tasks.
Abstract:We present Stylos, a single-forward 3D Gaussian framework for 3D style transfer that operates on unposed content, from a single image to a multi-view collection, conditioned on a separate reference style image. Stylos synthesizes a stylized 3D Gaussian scene without per-scene optimization or precomputed poses, achieving geometry-aware, view-consistent stylization that generalizes to unseen categories, scenes, and styles. At its core, Stylos adopts a Transformer backbone with two pathways: geometry predictions retain self-attention to preserve geometric fidelity, while style is injected via global cross-attention to enforce visual consistency across views. With the addition of a voxel-based 3D style loss that aligns aggregated scene features to style statistics, Stylos enforces view-consistent stylization while preserving geometry. Experiments across multiple datasets demonstrate that Stylos delivers high-quality zero-shot stylization, highlighting the effectiveness of global style-content coupling, the proposed 3D style loss, and the scalability of our framework from single view to large-scale multi-view settings.
Abstract:Auto-bidding is central to computational advertising, achieving notable commercial success by optimizing advertisers' bids within economic constraints. Recently, large generative models show potential to revolutionize auto-bidding by generating bids that could flexibly adapt to complex, competitive environments. Among them, diffusers stand out for their ability to address sparse-reward challenges by focusing on trajectory-level accumulated rewards, as well as their explainable capability, i.e., planning a future trajectory of states and executing bids accordingly. However, diffusers struggle with generation uncertainty, particularly regarding dynamic legitimacy between adjacent states, which can lead to poor bids and further cause significant loss of ad impression opportunities when competing with other advertisers in a highly competitive auction environment. To address it, we propose a Causal auto-Bidding method based on a Diffusion completer-aligner framework, termed CBD. Firstly, we augment the diffusion training process with an extra random variable t, where the model observes t-length historical sequences with the goal of completing the remaining sequence, thereby enhancing the generated sequences' dynamic legitimacy. Then, we employ a trajectory-level return model to refine the generated trajectories, aligning more closely with advertisers' objectives. Experimental results across diverse settings demonstrate that our approach not only achieves superior performance on large-scale auto-bidding benchmarks, such as a 29.9% improvement in conversion value in the challenging sparse-reward auction setting, but also delivers significant improvements on the Kuaishou online advertising platform, including a 2.0% increase in target cost.
Abstract:In large-scale recommender systems, ultra-long user behavior sequences encode rich signals of evolving interests. Extending sequence length generally improves accuracy, but directly modeling such sequences in production is infeasible due to latency and memory constraints. Existing solutions fall into two categories: (1) top-k retrieval, which truncates the sequence and may discard most attention mass when L >> k; and (2) encoder-based compression, which preserves coverage but often over-compresses and fails to incorporate key context such as temporal gaps or target-aware signals. Neither class achieves a good balance of low-loss compression, context awareness, and efficiency. We propose VQL, a context-aware Vector Quantization Attention framework for ultra-long behavior modeling, with three innovations. (1) Key-only quantization: only attention keys are quantized, while values remain intact; we prove that softmax normalization yields an error bound independent of sequence length, and a codebook loss directly supervises quantization quality. This also enables L-free inference via offline caches. (2) Multi-scale quantization: attention heads are partitioned into groups, each with its own small codebook, which reduces quantization error while keeping cache size fixed. (3) Efficient context injection: static features (e.g., item category, modality) are directly integrated, and relative position is modeled via a separable temporal kernel. All context is injected without enlarging the codebook, so cached representations remain query-independent. Experiments on three large-scale datasets (KuaiRand-1K, KuaiRec, TMALL) show that VQL consistently outperforms strong baselines, achieving higher accuracy while reducing inference latency, establishing a new state of the art in balancing accuracy and efficiency for ultra-long sequence recommendation.