Abstract:The Copilot for Real-world Experimental Scientist (CRESt) system empowers researchers to control autonomous laboratories through conversational AI, providing a seamless interface for managing complex experimental workflows. We have enhanced CRESt by integrating a multi-agent collaboration mechanism that utilizes the complementary strengths of the ChatGPT and Gemini models for precise image analysis in materials science. This innovative approach significantly improves the accuracy of experimental outcomes by fostering structured debates between the AI models, which enhances decision-making processes in materials phase analysis. Additionally, to evaluate the generalizability of this approach, we tested it on a quantitative task of counting particles. Here, the collaboration between the AI models also led to improved results, demonstrating the versatility and robustness of this method. By harnessing this dual-AI framework, this approach stands as a pioneering method for enhancing experimental accuracy and efficiency in materials research, with applications extending beyond CRESt to broader scientific experimentation and analysis.
Abstract:Graph domain adaptation has emerged as a promising approach to facilitate knowledge transfer across different domains. Recently, numerous models have been proposed to enhance their generalization capabilities in this field. However, there is still no unified library that brings together existing techniques and simplifies their implementation. To fill this gap, we introduce PyGDA, an open-source Python library tailored for graph domain adaptation. As the first comprehensive library in this area, PyGDA covers more than 20 widely used graph domain adaptation methods together with different types of graph datasets. Specifically, PyGDA offers modular components, enabling users to seamlessly build custom models with a variety of commonly used utility functions. To handle large-scale graphs, PyGDA includes support for features such as sampling and mini-batch processing, ensuring efficient computation. In addition, PyGDA also includes comprehensive performance benchmarks and well-documented user-friendly API for both researchers and practitioners. To foster convenient accessibility, PyGDA is released under the MIT license at https://github.com/pygda-team/pygda, and the API documentation is https://pygda.readthedocs.io/en/stable/.
Abstract:The remarkable achievements of large language models (LLMs) have led many to conclude that they exhibit a form of intelligence. This is as opposed to explanations of their capabilities based on their ability to perform relatively simple manipulations of vast volumes of data. To illuminate the distinction between these explanations, we introduce a novel generative model that generates tokens on the basis of human interpretable concepts represented as latent discrete variables. Under mild conditions, even when the mapping from the latent space to the observed space is non-invertible, we establish an identifiability result: the representations learned by LLMs through next-token prediction can be approximately modeled as the logarithm of the posterior probabilities of these latent discrete concepts, up to an invertible linear transformation. This theoretical finding not only provides evidence that LLMs capture underlying generative factors, but also strongly reinforces the linear representation hypothesis, which posits that LLMs learn linear representations of human-interpretable concepts. Empirically, we validate our theoretical results through evaluations on both simulation data and the Pythia, Llama, and DeepSeek model families.
Abstract:Cascade Ranking is a prevalent architecture in large-scale top-k selection systems like recommendation and advertising platforms. Traditional training methods focus on single-stage optimization, neglecting interactions between stages. Recent advances such as RankFlow and FS-LTR have introduced interaction-aware training paradigms but still struggle to 1) align training objectives with the goal of the entire cascade ranking (i.e., end-to-end recall) and 2) learn effective collaboration patterns for different stages. To address these challenges, we propose LCRON, which introduces a novel surrogate loss function derived from the lower bound probability that ground truth items are selected by cascade ranking, ensuring alignment with the overall objective of the system. According to the properties of the derived bound, we further design an auxiliary loss for each stage to drive the reduction of this bound, leading to a more robust and effective top-k selection. LCRON enables end-to-end training of the entire cascade ranking system as a unified network. Experimental results demonstrate that LCRON achieves significant improvement over existing methods on public benchmarks and industrial applications, addressing key limitations in cascade ranking training and significantly enhancing system performance.
Abstract:Despite the advancements made in Visual Large Language Models (VLLMs), like text Large Language Models (LLMs), they have limitations in addressing questions that require real-time information or are knowledge-intensive. Indiscriminately adopting Retrieval Augmented Generation (RAG) techniques is an effective yet expensive way to enable models to answer queries beyond their knowledge scopes. To mitigate the dependence on retrieval and simultaneously maintain, or even improve, the performance benefits provided by retrieval, we propose a method to detect the knowledge boundary of VLLMs, allowing for more efficient use of techniques like RAG. Specifically, we propose a method with two variants that fine-tunes a VLLM on an automatically constructed dataset for boundary identification. Experimental results on various types of Visual Question Answering datasets show that our method successfully depicts a VLLM's knowledge boundary based on which we are able to reduce indiscriminate retrieval while maintaining or improving the performance. In addition, we show that the knowledge boundary identified by our method for one VLLM can be used as a surrogate boundary for other VLLMs. Code will be released at https://github.com/Chord-Chen-30/VLLM-KnowledgeBoundary
Abstract:Large language models have demonstrated exceptional capabilities across diverse tasks, but their fine-tuning demands significant memory, posing challenges for resource-constrained environments. Zeroth-order (ZO) optimization provides a memory-efficient alternative by eliminating the need for backpropagation. However, ZO optimization suffers from high gradient variance, and prior research has largely focused on single-task learning, leaving its application to multi-task learning unexplored. Multi-task learning is crucial for leveraging shared knowledge across tasks to improve generalization, yet it introduces unique challenges under ZO settings, such as amplified gradient variance and collinearity. In this paper, we present MaZO, the first framework specifically designed for multi-task LLM fine-tuning under ZO optimization. MaZO tackles these challenges at the parameter level through two key innovations: a weight importance metric to identify critical parameters and a multi-task weight update mask to selectively update these parameters, reducing the dimensionality of the parameter space and mitigating task conflicts. Experiments demonstrate that MaZO achieves state-of-the-art performance, surpassing even multi-task learning methods designed for first-order optimization.
Abstract:Unsupervised graph domain adaptation (UGDA) focuses on transferring knowledge from labeled source graph to unlabeled target graph under domain discrepancies. Most existing UGDA methods are designed to adapt information from a single source domain, which cannot effectively exploit the complementary knowledge from multiple source domains. Furthermore, their assumptions that the labeled source graphs are accessible throughout the training procedure might not be practical due to privacy, regulation, and storage concerns. In this paper, we investigate multi-source-free unsupervised graph domain adaptation, i.e., adapting knowledge from multiple source domains to an unlabeled target domain without utilizing labeled source graphs but relying solely on source pre-trained models. Unlike previous multi-source domain adaptation approaches that aggregate predictions at model level, we introduce a novel model named GraphATA which conducts adaptation at node granularity. Specifically, we parameterize each node with its own graph convolutional matrix by automatically aggregating weight matrices from multiple source models according to its local context, thus realizing dynamic adaptation over graph structured data. We also demonstrate the capability of GraphATA to generalize to both model-centric and layer-centric methods. Comprehensive experiments on various public datasets show that our GraphATA can consistently surpass recent state-of-the-art baselines with different gains.
Abstract:Query routing for retrieval-augmented generation aims to assign an input query to the most suitable search engine. Existing works rely heavily on supervised datasets that require extensive manual annotation, resulting in high costs and limited scalability, as well as poor generalization to out-of-distribution scenarios. To address these challenges, we introduce a novel unsupervised method that constructs the "upper-bound" response to evaluate the quality of retrieval-augmented responses. This evaluation enables the decision of the most suitable search engine for a given query. By eliminating manual annotations, our approach can automatically process large-scale real user queries and create training data. We conduct extensive experiments across five datasets, demonstrating that our method significantly enhances scalability and generalization capabilities.
Abstract:We present DeepSeek-V3, a strong Mixture-of-Experts (MoE) language model with 671B total parameters with 37B activated for each token. To achieve efficient inference and cost-effective training, DeepSeek-V3 adopts Multi-head Latent Attention (MLA) and DeepSeekMoE architectures, which were thoroughly validated in DeepSeek-V2. Furthermore, DeepSeek-V3 pioneers an auxiliary-loss-free strategy for load balancing and sets a multi-token prediction training objective for stronger performance. We pre-train DeepSeek-V3 on 14.8 trillion diverse and high-quality tokens, followed by Supervised Fine-Tuning and Reinforcement Learning stages to fully harness its capabilities. Comprehensive evaluations reveal that DeepSeek-V3 outperforms other open-source models and achieves performance comparable to leading closed-source models. Despite its excellent performance, DeepSeek-V3 requires only 2.788M H800 GPU hours for its full training. In addition, its training process is remarkably stable. Throughout the entire training process, we did not experience any irrecoverable loss spikes or perform any rollbacks. The model checkpoints are available at https://github.com/deepseek-ai/DeepSeek-V3.
Abstract:Vehicle detection and tracking in satellite video is essential in remote sensing (RS) applications. However, upon the statistical analysis of existing datasets, we find that the dim vehicles with low radiation intensity and limited contrast against the background are rarely annotated, which leads to the poor effect of existing approaches in detecting moving vehicles under low radiation conditions. In this paper, we address the challenge by building a \textbf{S}mall and \textbf{D}im \textbf{M}oving Cars (SDM-Car) dataset with a multitude of annotations for dim vehicles in satellite videos, which is collected by the Luojia 3-01 satellite and comprises 99 high-quality videos. Furthermore, we propose a method based on image enhancement and attention mechanisms to improve the detection accuracy of dim vehicles, serving as a benchmark for evaluating the dataset. Finally, we assess the performance of several representative methods on SDM-Car and present insightful findings. The dataset is openly available at https://github.com/TanedaM/SDM-Car.