The Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, Virginia, USA
Abstract:Conformal prediction (CP) has become a cornerstone of distribution-free uncertainty quantification, conventionally evaluated by its coverage and interval length. This work critically examines the sufficiency of these standard metrics. We demonstrate that the interval length might be deceptively improved through a counter-intuitive approach termed Prejudicial Trick (PT), while the coverage remains valid. Specifically, for any given test sample, PT probabilistically returns an interval, which is either null or constructed using an adjusted confidence level, thereby preserving marginal coverage. While PT potentially yields a deceptively lower interval length, it introduces practical vulnerabilities: the same input can yield completely different prediction intervals across repeated runs of the algorithm. We formally derive the conditions under which PT achieves these misleading improvements and provides extensive empirical evidence across various regression and classification tasks. Furthermore, we introduce a new metric interval stability which helps detect whether a new CP method implicitly improves the length based on such PT-like techniques.
Abstract:Visual Question-Answering (VQA) is a challenging multimodal task that requires integrating visual and textual information to generate accurate responses. While multimodal Retrieval-Augmented Generation (mRAG) has shown promise in enhancing VQA systems by providing more evidence on both image and text sides, the default procedure that addresses VQA queries, especially the knowledge-intensive ones, often relies on multi-stage pipelines of mRAG with inherent dependencies. To mitigate the inefficiency limitations while maintaining VQA task performance, this paper proposes a method that trains a multimodal planning agent, dynamically decomposing the mRAG pipeline to solve the VQA task. Our method optimizes the trade-off between efficiency and effectiveness by training the agent to intelligently determine the necessity of each mRAG step. In our experiments, the agent can help reduce redundant computations, cutting search time by over 60\% compared to existing methods and decreasing costly tool calls. Meanwhile, experiments demonstrate that our method outperforms all baselines, including a Deep Research agent and a carefully designed prompt-based method, on average over six various datasets. Code will be released.
Abstract:Deploying deep learning agents for autonomous navigation in unstructured environments faces critical challenges regarding safety, data scarcity, and limited computational resources. Traditional solvers often suffer from high latency, while emerging learning-based approaches struggle to ensure deterministic feasibility. To bridge the gap from embodied to embedded intelligence, we propose a self-supervised framework incorporating a differentiable hard constraint projection layer for runtime assurance. To mitigate data scarcity, we construct a Global-Guided Artificial Potential Field (G-APF), which provides dense supervision signals without manual labeling. To enforce actuator limitations and geometric constraints efficiently, we employ an adaptive neural projection layer, which iteratively rectifies the coarse network output onto the feasible manifold. Extensive benchmarks on a test set of 20,000 scenarios demonstrate an 88.75\% success rate, substantiating the enhanced operational safety. Closed-loop experiments in CARLA further validate the physical realizability of the planned paths under dynamic constraints. Furthermore, deployment verification on an NVIDIA Jetson Orin NX confirms an inference latency of 94 ms, showing real-time feasibility on resource-constrained embedded hardware. This framework offers a generalized paradigm for embedding physical laws into neural architectures, providing a viable direction for solving constrained optimization in mechatronics. Source code is available at: https://github.com/wzq-13/SSHC.git.
Abstract:While InfoNCE powers modern contrastive learning, its geometric mechanisms remain under-characterized beyond the canonical alignment--uniformity decomposition. We present a measure-theoretic framework that models learning as the evolution of representation measures on a fixed embedding manifold. By establishing value and gradient consistency in the large-batch limit, we bridge the stochastic objective to explicit deterministic energy landscapes, uncovering a fundamental geometric bifurcation between the unimodal and multimodal regimes. In the unimodal setting, the intrinsic landscape is strictly convex with a unique Gibbs equilibrium; here, entropy acts merely as a tie-breaker, clarifying "uniformity" as a constrained expansion within the alignment basin. In contrast, the symmetric multimodal objective contains a persistent negative symmetric divergence term that remains even after kernel sharpening. We show that this term induces barrier-driven co-adaptation, enforcing a population-level modality gap as a structural geometric necessity rather than an initialization artifact. Our results shift the analytical lens from pointwise discrimination to population geometry, offering a principled basis for diagnosing and controlling distributional misalignment.
Abstract:Understanding where and how emotions are represented in large-scale foundation models remains an open problem, particularly in multimodal affective settings. Despite the strong empirical performance of recent affective models, the internal architectural mechanisms that support affective understanding and generation are still poorly understood. In this work, we present a systematic mechanistic study of affective modeling in multimodal foundation models. Across multiple architectures, training strategies, and affective tasks, we analyze how emotion-oriented supervision reshapes internal model parameters. Our results consistently reveal a clear and robust pattern: affective adaptation does not primarily focus on the attention module, but instead localizes to the feed-forward gating projection (\texttt{gate\_proj}). Through controlled module transfer, targeted single-module adaptation, and destructive ablation, we further demonstrate that \texttt{gate\_proj} is sufficient, efficient, and necessary for affective understanding and generation. Notably, by tuning only approximately 24.5\% of the parameters tuned by AffectGPT, our approach achieves 96.6\% of its average performance across eight affective tasks, highlighting substantial parameter efficiency. Together, these findings provide empirical evidence that affective capabilities in foundation models are structurally mediated by feed-forward gating mechanisms and identify \texttt{gate\_proj} as a central architectural locus of affective modeling.
Abstract:Multimodal Large Language Models (MLLMs) show promise in gastroenterology, yet their performance against comprehensive clinical workflows and human benchmarks remains unverified. To systematically evaluate state-of-the-art MLLMs across a panoramic gastrointestinal endoscopy workflow and determine their clinical utility compared with human endoscopists. We constructed GI-Bench, a benchmark encompassing 20 fine-grained lesion categories. Twelve MLLMs were evaluated across a five-stage clinical workflow: anatomical localization, lesion identification, diagnosis, findings description, and management. Model performance was benchmarked against three junior endoscopists and three residency trainees using Macro-F1, mean Intersection-over-Union (mIoU), and multi-dimensional Likert scale. Gemini-3-Pro achieved state-of-the-art performance. In diagnostic reasoning, top-tier models (Macro-F1 0.641) outperformed trainees (0.492) and rivaled junior endoscopists (0.727; p>0.05). However, a critical "spatial grounding bottleneck" persisted; human lesion localization (mIoU >0.506) significantly outperformed the best model (0.345; p<0.05). Furthermore, qualitative analysis revealed a "fluency-accuracy paradox": models generated reports with superior linguistic readability compared with humans (p<0.05) but exhibited significantly lower factual correctness (p<0.05) due to "over-interpretation" and hallucination of visual features.GI-Bench maintains a dynamic leaderboard that tracks the evolving performance of MLLMs in clinical endoscopy. The current rankings and benchmark results are available at https://roterdl.github.io/GIBench/.
Abstract:Autoformalization, which translates natural language mathematics into formal statements to enable machine reasoning, faces fundamental challenges in the wild due to the multimodal nature of the physical world, where physics requires inferring hidden constraints (e.g., mass or energy) from visual elements. To address this, we propose MMFormalizer, which extends autoformalization beyond text by integrating adaptive grounding with entities from real-world mathematical and physical domains. MMFormalizer recursively constructs formal propositions from perceptually grounded primitives through recursive grounding and axiom composition, with adaptive recursive termination ensuring that every abstraction is supported by visual evidence and anchored in dimensional or axiomatic grounding. We evaluate MMFormalizer on a new benchmark, PhyX-AF, comprising 115 curated samples from MathVerse, PhyX, Synthetic Geometry, and Analytic Geometry, covering diverse multimodal autoformalization tasks. Results show that frontier models such as GPT-5 and Gemini-3-Pro achieve the highest compile and semantic accuracy, with GPT-5 excelling in physical reasoning, while geometry remains the most challenging domain. Overall, MMFormalizer provides a scalable framework for unified multimodal autoformalization, bridging perception and formal reasoning. To the best of our knowledge, this is the first multimodal autoformalization method capable of handling classical mechanics (derived from the Hamiltonian), as well as relativity, quantum mechanics, and thermodynamics. More details are available on our project page: MMFormalizer.github.io
Abstract:Conducting reinforcement learning (RL) in simulated environments offers a cost-effective and highly scalable way to enhance language-based agents. However, previous work has been limited to semi-automated environment synthesis or tasks lacking sufficient difficulty, offering little breadth or depth. In addition, the instability of simulated users integrated into these environments, along with the heterogeneity across simulated environments, poses further challenges for agentic RL. In this work, we propose: (1) a unified pipeline for automated and scalable synthesis of simulated environments associated with high-difficulty but easily verifiable tasks; and (2) an environment level RL algorithm that not only effectively mitigates user instability but also performs advantage estimation at the environment level, thereby improving training efficiency and stability. Comprehensive evaluations on agentic benchmarks, including tau-bench, tau2-Bench, and VitaBench, validate the effectiveness of our proposed method. Further in-depth analyses underscore its out-of-domain generalization.
Abstract:The Lottery Ticket Hypothesis (LTH) suggests that over-parameterized neural networks contain sparse subnetworks ("winning tickets") capable of matching full model performance when trained from scratch. With the growing reliance on fine-tuning large pretrained models, we investigate whether LTH extends to parameter-efficient fine-tuning (PEFT), specifically focusing on Low-Rank Adaptation (LoRA) methods. Our key finding is that LTH holds within LoRAs, revealing sparse subnetworks that can match the performance of dense adapters. In particular, we find that the effectiveness of sparse subnetworks depends more on how much sparsity is applied in each layer than on the exact weights included in the subnetwork. Building on this insight, we propose Partial-LoRA, a method that systematically identifies said subnetworks and trains sparse low-rank adapters aligned with task-relevant subspaces of the pre-trained model. Experiments across 8 vision and 12 language tasks in both single-task and multi-task settings show that Partial-LoRA reduces the number of trainable parameters by up to 87\%, while maintaining or improving accuracy. Our results not only deepen our theoretical understanding of transfer learning and the interplay between pretraining and fine-tuning but also open new avenues for developing more efficient adaptation strategies.
Abstract:Large pre-trained models have transformed machine learning, yet adapting these models effectively to exhibit precise, concept-specific behaviors remains a significant challenge. Task vectors, defined as the difference between fine-tuned and pre-trained model parameters, provide a mechanism for steering neural networks toward desired behaviors. This has given rise to large repositories dedicated to task vectors tailored for specific behaviors. The arithmetic operation of these task vectors allows for the seamless combination of desired behaviors without the need for large datasets. However, these vectors often contain overlapping concepts that can interfere with each other during arithmetic operations, leading to unpredictable outcomes. We propose a principled decomposition method that separates each task vector into two components: one capturing shared knowledge across multiple task vectors, and another isolating information unique to each specific task. By identifying invariant subspaces across projections, our approach enables more precise control over concept manipulation without unintended amplification or diminution of other behaviors. We demonstrate the effectiveness of our decomposition method across three domains: improving multi-task merging in image classification by 5% using shared components as additional task vectors, enabling clean style mixing in diffusion models without generation degradation by mixing only the unique components, and achieving 47% toxicity reduction in language models while preserving performance on general knowledge tasks by negating the toxic information isolated to the unique component. Our approach provides a new framework for understanding and controlling task vector arithmetic, addressing fundamental limitations in model editing operations.