Abstract:Large language models have demonstrated exceptional capabilities across diverse tasks, but their fine-tuning demands significant memory, posing challenges for resource-constrained environments. Zeroth-order (ZO) optimization provides a memory-efficient alternative by eliminating the need for backpropagation. However, ZO optimization suffers from high gradient variance, and prior research has largely focused on single-task learning, leaving its application to multi-task learning unexplored. Multi-task learning is crucial for leveraging shared knowledge across tasks to improve generalization, yet it introduces unique challenges under ZO settings, such as amplified gradient variance and collinearity. In this paper, we present MaZO, the first framework specifically designed for multi-task LLM fine-tuning under ZO optimization. MaZO tackles these challenges at the parameter level through two key innovations: a weight importance metric to identify critical parameters and a multi-task weight update mask to selectively update these parameters, reducing the dimensionality of the parameter space and mitigating task conflicts. Experiments demonstrate that MaZO achieves state-of-the-art performance, surpassing even multi-task learning methods designed for first-order optimization.
Abstract:Unsupervised graph domain adaptation (UGDA) focuses on transferring knowledge from labeled source graph to unlabeled target graph under domain discrepancies. Most existing UGDA methods are designed to adapt information from a single source domain, which cannot effectively exploit the complementary knowledge from multiple source domains. Furthermore, their assumptions that the labeled source graphs are accessible throughout the training procedure might not be practical due to privacy, regulation, and storage concerns. In this paper, we investigate multi-source-free unsupervised graph domain adaptation, i.e., adapting knowledge from multiple source domains to an unlabeled target domain without utilizing labeled source graphs but relying solely on source pre-trained models. Unlike previous multi-source domain adaptation approaches that aggregate predictions at model level, we introduce a novel model named GraphATA which conducts adaptation at node granularity. Specifically, we parameterize each node with its own graph convolutional matrix by automatically aggregating weight matrices from multiple source models according to its local context, thus realizing dynamic adaptation over graph structured data. We also demonstrate the capability of GraphATA to generalize to both model-centric and layer-centric methods. Comprehensive experiments on various public datasets show that our GraphATA can consistently surpass recent state-of-the-art baselines with different gains.
Abstract:Query routing for retrieval-augmented generation aims to assign an input query to the most suitable search engine. Existing works rely heavily on supervised datasets that require extensive manual annotation, resulting in high costs and limited scalability, as well as poor generalization to out-of-distribution scenarios. To address these challenges, we introduce a novel unsupervised method that constructs the "upper-bound" response to evaluate the quality of retrieval-augmented responses. This evaluation enables the decision of the most suitable search engine for a given query. By eliminating manual annotations, our approach can automatically process large-scale real user queries and create training data. We conduct extensive experiments across five datasets, demonstrating that our method significantly enhances scalability and generalization capabilities.
Abstract:We present DeepSeek-V3, a strong Mixture-of-Experts (MoE) language model with 671B total parameters with 37B activated for each token. To achieve efficient inference and cost-effective training, DeepSeek-V3 adopts Multi-head Latent Attention (MLA) and DeepSeekMoE architectures, which were thoroughly validated in DeepSeek-V2. Furthermore, DeepSeek-V3 pioneers an auxiliary-loss-free strategy for load balancing and sets a multi-token prediction training objective for stronger performance. We pre-train DeepSeek-V3 on 14.8 trillion diverse and high-quality tokens, followed by Supervised Fine-Tuning and Reinforcement Learning stages to fully harness its capabilities. Comprehensive evaluations reveal that DeepSeek-V3 outperforms other open-source models and achieves performance comparable to leading closed-source models. Despite its excellent performance, DeepSeek-V3 requires only 2.788M H800 GPU hours for its full training. In addition, its training process is remarkably stable. Throughout the entire training process, we did not experience any irrecoverable loss spikes or perform any rollbacks. The model checkpoints are available at https://github.com/deepseek-ai/DeepSeek-V3.
Abstract:Vehicle detection and tracking in satellite video is essential in remote sensing (RS) applications. However, upon the statistical analysis of existing datasets, we find that the dim vehicles with low radiation intensity and limited contrast against the background are rarely annotated, which leads to the poor effect of existing approaches in detecting moving vehicles under low radiation conditions. In this paper, we address the challenge by building a \textbf{S}mall and \textbf{D}im \textbf{M}oving Cars (SDM-Car) dataset with a multitude of annotations for dim vehicles in satellite videos, which is collected by the Luojia 3-01 satellite and comprises 99 high-quality videos. Furthermore, we propose a method based on image enhancement and attention mechanisms to improve the detection accuracy of dim vehicles, serving as a benchmark for evaluating the dataset. Finally, we assess the performance of several representative methods on SDM-Car and present insightful findings. The dataset is openly available at https://github.com/TanedaM/SDM-Car.
Abstract:Advertising systems often face the multi-domain challenge, where data distributions vary significantly across scenarios. Existing domain adaptation methods primarily focus on building domain-adaptive neural networks but often rely on hand-crafted domain information, e.g., advertising placement, which may be sub-optimal. We think that fine-grained "domain" patterns exist that are difficult to hand-craft in online advertisement. Thus, we propose Adaptive$^2$, a novel framework that first learns domains adaptively using a domain mining module by self-supervision and then employs a shared&specific network to model shared and conflicting information. As a practice, we use VQ-VAE as the domain mining module and conduct extensive experiments on public benchmarks. Results show that traditional domain adaptation methods with hand-crafted domains perform no better than single-domain models under fair FLOPS conditions, highlighting the importance of domain definition. In contrast, Adaptive$^2$ outperforms existing approaches, emphasizing the effectiveness of our method and the significance of domain mining. We also deployed Adaptive$^2$ in the live streaming scenario of Kuaishou Advertising System, demonstrating its commercial value and potential for automatic domain identification. To the best of our knowledge, Adaptive$^2$ is the first approach to automatically learn both domain identification and adaptation in online advertising, opening new research directions for this area.
Abstract:The scaling law is a notable property of neural network models and has significantly propelled the development of large language models. Scaling laws hold great promise in guiding model design and resource allocation. Recent research increasingly shows that scaling laws are not limited to NLP tasks or Transformer architectures; they also apply to domains such as recommendation. However, there is still a lack of literature on scaling law research in online advertisement retrieval systems. This may be because 1) identifying the scaling law for resource cost and online revenue is often expensive in both time and training resources for large-scale industrial applications, and 2) varying settings for different systems prevent the scaling law from being applied across various scenarios. To address these issues, we propose a lightweight paradigm to identify the scaling law of online revenue and machine cost for a certain online advertisement retrieval scenario with a low experimental cost. Specifically, we focus on a sole factor (FLOPs) and propose an offline metric named R/R* that exhibits a high linear correlation with online revenue for retrieval models. We estimate the machine cost offline via a simulation algorithm. Thus, we can transform most online experiments into low-cost offline experiments. We conduct comprehensive experiments to verify the effectiveness of our proposed metric R/R* and to identify the scaling law in the online advertisement retrieval system of Kuaishou. With the scaling law, we demonstrate practical applications for ROI-constrained model designing and multi-scenario resource allocation in Kuaishou advertising system. To the best of our knowledge, this is the first work to study the scaling laws for online advertisement retrieval of real-world systems, showing great potential for scaling law in advertising system optimization.
Abstract:Large Language Models (LLMs) are increasingly recognized for their practical applications. However, these models often encounter challenges in dynamically changing knowledge, as well as in managing unknown static knowledge. Retrieval-Augmented Generation (RAG) tackles this challenge and has shown a significant impact on LLMs. Actually, we find that the impact of RAG on the question answering capabilities of LLMs can be categorized into three groups: beneficial, neutral, and harmful. By minimizing retrieval requests that yield neutral or harmful results, we can effectively reduce both time and computational costs, while also improving the overall performance of LLMs. This insight motivates us to differentiate between types of questions using certain metrics as indicators, to decrease the retrieval ratio without compromising performance. In our work, we propose a method that is able to identify different types of questions from this view by training a Knowledge Boundary Model (KBM). Experiments conducted on 11 English and Chinese datasets illustrate that the KBM effectively delineates the knowledge boundary, significantly decreasing the proportion of retrievals required for optimal end-to-end performance. Specifically, we evaluate the effectiveness of KBM in three complex scenarios: dynamic knowledge, long-tail static knowledge, and multi-hop problems, as well as its functionality as an external LLM plug-in.
Abstract:Multimodal Retrieval Augmented Generation (mRAG) plays an important role in mitigating the "hallucination" issue inherent in multimodal large language models (MLLMs). Although promising, existing heuristic mRAGs typically predefined fixed retrieval processes, which causes two issues: (1) Non-adaptive Retrieval Queries. (2) Overloaded Retrieval Queries. However, these flaws cannot be adequately reflected by current knowledge-seeking visual question answering (VQA) datasets, since the most required knowledge can be readily obtained with a standard two-step retrieval. To bridge the dataset gap, we first construct Dyn-VQA dataset, consisting of three types of "dynamic" questions, which require complex knowledge retrieval strategies variable in query, tool, and time: (1) Questions with rapidly changing answers. (2) Questions requiring multi-modal knowledge. (3) Multi-hop questions. Experiments on Dyn-VQA reveal that existing heuristic mRAGs struggle to provide sufficient and precisely relevant knowledge for dynamic questions due to their rigid retrieval processes. Hence, we further propose the first self-adaptive planning agent for multimodal retrieval, OmniSearch. The underlying idea is to emulate the human behavior in question solution which dynamically decomposes complex multimodal questions into sub-question chains with retrieval action. Extensive experiments prove the effectiveness of our OmniSearch, also provide direction for advancing mRAG. The code and dataset will be open-sourced at https://github.com/Alibaba-NLP/OmniSearch.
Abstract:This work proposes DOFS, a pilot dataset of 3D deformable objects (DOs) (e.g., elasto-plastic objects) with full spatial information (i.e., top, side, and bottom information) using a novel and low-cost data collection platform with a transparent operating plane. The dataset consists of active manipulation action, multi-view RGB-D images, well-registered point clouds, 3D deformed mesh, and 3D occupancy with semantics, using a pinching strategy with a two-parallel-finger gripper. In addition, we trained a neural network with the down-sampled 3D occupancy and action as input to model the dynamics of an elasto-plastic object. Our dataset and all CADs of the data collection system will be released soon on our website.