Abstract:Large language models (LLMs) have shown potential in supporting decision-making applications, particularly as personal conversational assistants in the financial, healthcare, and legal domains. While prompt engineering strategies have enhanced the capabilities of LLMs in decision-making, cognitive biases inherent to LLMs present significant challenges. Cognitive biases are systematic patterns of deviation from norms or rationality in decision-making that can lead to the production of inaccurate outputs. Existing cognitive bias mitigation strategies assume that input prompts contain (exactly) one type of cognitive bias and therefore fail to perform well in realistic settings where there maybe any number of biases. To fill this gap, we propose a cognitive debiasing approach, called self-debiasing, that enhances the reliability of LLMs by iteratively refining prompts. Our method follows three sequential steps -- bias determination, bias analysis, and cognitive debiasing -- to iteratively mitigate potential cognitive biases in prompts. Experimental results on finance, healthcare, and legal decision-making tasks, using both closed-source and open-source LLMs, demonstrate that the proposed self-debiasing method outperforms both advanced prompt engineering methods and existing cognitive debiasing techniques in average accuracy under no-bias, single-bias, and multi-bias settings.
Abstract:Generative information retrieval (GenIR) is a promising neural retrieval paradigm that formulates document retrieval as a document identifier (docid) generation task, allowing for end-to-end optimization toward a unified global retrieval objective. However, existing GenIR models suffer from token-level misalignment, where models trained to predict the next token often fail to capture document-level relevance effectively. While reinforcement learning-based methods, such as reinforcement learning from relevance feedback (RLRF), aim to address this misalignment through reward modeling, they introduce significant complexity, requiring the optimization of an auxiliary reward function followed by reinforcement fine-tuning, which is computationally expensive and often unstable. To address these challenges, we propose direct document relevance optimization (DDRO), which aligns token-level docid generation with document-level relevance estimation through direct optimization via pairwise ranking, eliminating the need for explicit reward modeling and reinforcement learning. Experimental results on benchmark datasets, including MS MARCO document and Natural Questions, show that DDRO outperforms reinforcement learning-based methods, achieving a 7.4% improvement in MRR@10 for MS MARCO and a 19.9% improvement for Natural Questions. These findings highlight DDRO's potential to enhance retrieval effectiveness with a simplified optimization approach. By framing alignment as a direct optimization problem, DDRO simplifies the ranking optimization pipeline of GenIR models while offering a viable alternative to reinforcement learning-based methods.
Abstract:The purpose of the MANILA24 Workshop on information retrieval for climate impact was to bring together researchers from academia, industry, governments, and NGOs to identify and discuss core research problems in information retrieval to assess climate change impacts. The workshop aimed to foster collaboration by bringing communities together that have so far not been very well connected -- information retrieval, natural language processing, systematic reviews, impact assessments, and climate science. The workshop brought together a diverse set of researchers and practitioners interested in contributing to the development of a technical research agenda for information retrieval to assess climate change impacts.
Abstract:In two-sided marketplaces, items compete for user attention, which translates to revenue for suppliers. Item exposure, indicated by the amount of attention items receive in a ranking, can be influenced by factors like position bias. Recent work suggests that inter-item dependencies, such as outlier items in a ranking, also affect item exposure. Outlier items are items that observably deviate from the other items in a ranked list. Understanding outlier items is crucial for determining an item's exposure distribution. In our previous work, we investigated the impact of different presentational features on users' perception of outlier in search results. In this work, we focus on two key questions left unanswered by our previous work: (i) What is the effect of isolated bottom-up visual factors on item outlierness in product lists? (ii) How do top-down factors influence users' perception of item outlierness in a realistic online shopping scenario? We start with bottom-up factors and employ visual saliency models to evaluate their ability to detect outlier items in product lists purely based on visual attributes. Then, to examine top-down factors, we conduct eye-tracking experiments on an online shopping task. Moreover, we employ eye-tracking to not only be closer to the real-world case but also to address the accuracy problem of reaction time in the visual search task. Our experiments show the ability of visual saliency models to detect bottom-up factors, consistently highlighting areas with strong visual contrasts. The results of our eye-tracking experiment for lists without outliers show that despite being less visually attractive, product descriptions captured attention the fastest, indicating the importance of top-down factors. In our eye-tracking experiments, we observed that outlier items engaged users for longer durations compared to non-outlier items.
Abstract:Zero-shot named entity recognition (NER) aims to develop entity recognition systems from unannotated text corpora. This task presents substantial challenges due to minimal human intervention. Recent work has adapted large language models (LLMs) for zero-shot NER by crafting specialized prompt templates. It advances model self-learning abilities by incorporating self-annotated demonstrations. However, two important challenges persist: (i) Correlations between contexts surrounding entities are overlooked, leading to wrong type predictions or entity omissions. (ii) The indiscriminate use of task demonstrations, retrieved through shallow similarity-based strategies, severely misleads LLMs during inference. In this paper, we introduce the cooperative multi-agent system (CMAS), a novel framework for zero-shot NER that uses the collective intelligence of multiple agents to address the challenges outlined above. CMAS has four main agents: (i) a self-annotator, (ii) a type-related feature (TRF) extractor, (iii) a demonstration discriminator, and (iv) an overall predictor. To explicitly capture correlations between contexts surrounding entities, CMAS reformulates NER into two subtasks: recognizing named entities and identifying entity type-related features within the target sentence. To enable controllable utilization of demonstrations, a demonstration discriminator is established to incorporate the self-reflection mechanism, automatically evaluating helpfulness scores for the target sentence. Experimental results show that CMAS significantly improves zero-shot NER performance across six benchmarks, including both domain-specific and general-domain scenarios. Furthermore, CMAS demonstrates its effectiveness in few-shot settings and with various LLM backbones.
Abstract:In modern information retrieval (IR). achieving more than just accuracy is essential to sustaining a healthy ecosystem, especially when addressing fairness and diversity considerations. To meet these needs, various datasets, algorithms, and evaluation frameworks have been introduced. However, these algorithms are often tested across diverse metrics, datasets, and experimental setups, leading to inconsistencies and difficulties in direct comparisons. This highlights the need for a comprehensive IR toolkit that enables standardized evaluation of fairness- and diversity-aware algorithms across different IR tasks. To address this challenge, we present FairDiverse, an open-source and standardized toolkit. FairDiverse offers a framework for integrating fair and diverse methods, including pre-processing, in-processing, and post-processing techniques, at different stages of the IR pipeline. The toolkit supports the evaluation of 28 fairness and diversity algorithms across 16 base models, covering two core IR tasks (search and recommendation) thereby establishing a comprehensive benchmark. Moreover, FairDiverse is highly extensible, providing multiple APIs that empower IR researchers to swiftly develop and evaluate their own fairness and diversity aware models, while ensuring fair comparisons with existing baselines. The project is open-sourced and available on https://github.com/XuChen0427/FairDiverse.
Abstract:Neural news recommender systems (RSs) have integrated language models (LMs) to encode news articles with rich textual information into representations, thereby improving the recommendation process. Most studies suggest that (i) news RSs achieve better performance with larger pre-trained language models (PLMs) than shallow language models (SLMs), and (ii) that large language models (LLMs) outperform PLMs. However, other studies indicate that PLMs sometimes lead to worse performance than SLMs. Thus, it remains unclear whether using larger LMs consistently improves the performance of news RSs. In this paper, we revisit, unify, and extend these comparisons of the effectiveness of LMs in news RSs using the real-world MIND dataset. We find that (i) larger LMs do not necessarily translate to better performance in news RSs, and (ii) they require stricter fine-tuning hyperparameter selection and greater computational resources to achieve optimal recommendation performance than smaller LMs. On the positive side, our experiments show that larger LMs lead to better recommendation performance for cold-start users: they alleviate dependency on extensive user interaction history and make recommendations more reliant on the news content.
Abstract:In book search, relevant book information should be returned in response to a query. Books contain complex, multi-faceted information such as metadata, outlines, and main text, where the outline provides hierarchical information between chapters and sections. Generative retrieval (GR) is a new retrieval paradigm that consolidates corpus information into a single model to generate identifiers of documents that are relevant to a given query. How can GR be applied to book search? Directly applying GR to book search is a challenge due to the unique characteristics of book search: The model needs to retain the complex, multi-faceted information of the book, which increases the demand for labeled data. Splitting book information and treating it as a collection of separate segments for learning might result in a loss of hierarchical information. We propose an effective Generative retrieval framework for Book Search (GBS) that features two main components: data augmentation and outline-oriented book encoding. For data augmentation, GBS constructs multiple query-book pairs for training; it constructs multiple book identifiers based on the outline, various forms of book contents, and simulates real book retrieval scenarios with varied pseudo-queries. This includes coverage-promoting book identifier augmentation, allowing the model to learn to index effectively, and diversity-enhanced query augmentation, allowing the model to learn to retrieve effectively. Outline-oriented book encoding improves length extrapolation through bi-level positional encoding and retentive attention mechanisms to maintain context over long sequences. Experiments on a proprietary Baidu dataset demonstrate that GBS outperforms strong baselines, achieving a 9.8\% improvement in terms of MRR@20, over the state-of-the-art RIPOR method...
Abstract:In next basket recommendation (NBR) a set of items is recommended to users based on their historical basket sequences. In many domains, the recommended baskets consist of both repeat items and explore items. Some state-of-the-art NBR methods are heavily biased to recommend repeat items so as to maximize utility. The evaluation and optimization of beyond-accuracy objectives for NBR, such as item fairness and diversity, has attracted increasing attention. How can such beyond-accuracy objectives be pursued in the presence of heavy repeat bias? We find that only optimizing diversity or item fairness without considering repeat bias may cause NBR algorithms to recommend more repeat items. To solve this problem, we propose a model-agnostic repeat-bias-aware optimization algorithm to post-process the recommended results obtained from NBR methods with the objective of mitigating repeat bias when optimizing diversity or item fairness. We consider multiple variations of our optimization algorithm to cater to multiple NBR methods. Experiments on three real-world grocery shopping datasets show that the proposed algorithms can effectively improve diversity and item fairness, and mitigate repeat bias at acceptable Recall loss.
Abstract:Generative information retrieval methods retrieve documents by directly generating their identifiers. Much effort has been devoted to developing effective generative IR models. Less attention has been paid to the robustness of these models. It is critical to assess the out-of-distribution (OOD) generalization of generative IR models, i.e., how would such models generalize to new distributions? To answer this question, we focus on OOD scenarios from four perspectives in retrieval problems: (i)query variations; (ii)unseen query types; (iii)unseen tasks; and (iv)corpus expansion. Based on this taxonomy, we conduct empirical studies to analyze the OOD robustness of representative generative IR models against dense retrieval models. Our empirical results indicate that the OOD robustness of generative IR models is in need of improvement. By inspecting the OOD robustness of generative IR models we aim to contribute to the development of more reliable IR models. The code is available at \url{https://github.com/Davion-Liu/GR_OOD}.