Abstract:Neural ranking models (NRMs) have been shown to be highly effective in terms of retrieval performance. Unfortunately, they have also displayed a higher degree of sensitivity to attacks than previous generation models. To help expose and address this lack of robustness, we introduce a novel ranking attack framework named Attack-in-the-Chain, which tracks interactions between large language models (LLMs) and NRMs based on chain-of-thought (CoT) prompting to generate adversarial examples under black-box settings. Our approach starts by identifying anchor documents with higher ranking positions than the target document as nodes in the reasoning chain. We then dynamically assign the number of perturbation words to each node and prompt LLMs to execute attacks. Finally, we verify the attack performance of all nodes at each reasoning step and proceed to generate the next reasoning step. Empirical results on two web search benchmarks show the effectiveness of our method.
Abstract:Multi-behavior recommendation (MBR) has garnered growing attention recently due to its ability to mitigate the sparsity issue by inferring user preferences from various auxiliary behaviors to improve predictions for the target behavior. Although existing research on MBR has yielded impressive results, they still face two major limitations. First, previous methods mainly focus on modeling fine-grained interaction information between users and items under each behavior, which may suffer from sparsity issue. Second, existing models usually concentrate on exploiting dependencies between two consecutive behaviors, leaving intra- and inter-behavior consistency largely unexplored. To the end, we propose a novel approach named Hypergraph Enhanced Cascading Graph Convolution Network for multi-behavior recommendation (HEC-GCN). To be specific, we first explore both fine- and coarse-grained correlations among users or items of each behavior by simultaneously modeling the behavior-specific interaction graph and its corresponding hypergraph in a cascaded manner. Then, we propose a behavior consistency-guided alignment strategy that ensures consistent representations between the interaction graph and its associated hypergraph for each behavior, while also maintaining representation consistency across different behaviors. Extensive experiments and analyses on three public benchmark datasets demonstrate that our proposed approach is consistently superior to previous state-of-the-art methods due to its capability to effectively attenuate the sparsity issue as well as preserve both intra- and inter-behavior consistencies. The code is available at https://github.com/marqu22/HEC-GCN.git.
Abstract:The advancement of LLMs has significantly boosted the performance of complex long-form question answering tasks. However, one prominent issue of LLMs is the generated "hallucination" responses that are not factual. Consequently, attribution for each claim in responses becomes a common solution to improve the factuality and verifiability. Existing researches mainly focus on how to provide accurate citations for the response, which largely overlook the importance of identifying the claims or statements for each response. To bridge this gap, we introduce a new claim decomposition benchmark, which requires building system that can identify atomic and checkworthy claims for LLM responses. Specifically, we present the Chinese Atomic Claim Decomposition Dataset (CACDD), which builds on the WebCPM dataset with additional expert annotations to ensure high data quality. The CACDD encompasses a collection of 500 human-annotated question-answer pairs, including a total of 4956 atomic claims. We further propose a new pipeline for human annotation and describe the challenges of this task. In addition, we provide experiment results on zero-shot, few-shot and fine-tuned LLMs as baselines. The results show that the claim decomposition is highly challenging and requires further explorations. All code and data are publicly available at \url{https://github.com/FBzzh/CACDD}.
Abstract:Retrieval-augmented generation (RAG) appears as a promising method to alleviate the "hallucination" problem in large language models (LLMs), since it can incorporate external traceable resources for response generation. The essence of RAG in combating the hallucination issue lies in accurately attributing claims in responses to the corresponding retrieved documents. However, most of existing works focus on improving the quality of generated responses from the LLM, while largely overlooked its ability to attribute sources accurately. In this study, we conduct a systematic analysis about the capabilities of LLMs in generating citations within response generation, and further introduce a novel method to enhance their citation generation abilities. Specifically, we evaluate both the correctness and citation quality for seven widely-used LLMs on two benchmark datasets. Meanwhile, we introduce new citation evaluation metrics to eliminate the over-penalization of unnecessary and excessive citations in existing metrics. Furthermore, we propose a Generate-then-Refine method that completes relevant citations and removes irrelevant ones without altering the response text. The results on WebGLM-QA, ASQA and ELI5 datasets show that our method substantially improves the quality of citations in responses generated by LLMs.
Abstract:Retrieval-augmented generation (RAG) has emerged as a popular solution to mitigate the hallucination issues of large language models. However, existing studies on RAG seldom address the issue of predictive uncertainty, i.e., how likely it is that a RAG model's prediction is incorrect, resulting in uncontrollable risks in real-world applications. In this work, we emphasize the importance of risk control, ensuring that RAG models proactively refuse to answer questions with low confidence. Our research identifies two critical latent factors affecting RAG's confidence in its predictions: the quality of the retrieved results and the manner in which these results are utilized. To guide RAG models in assessing their own confidence based on these two latent factors, we develop a counterfactual prompting framework that induces the models to alter these factors and analyzes the effect on their answers. We also introduce a benchmarking procedure to collect answers with the option to abstain, facilitating a series of experiments. For evaluation, we introduce several risk-related metrics and the experimental results demonstrate the effectiveness of our approach.
Abstract:Generative LLM have achieved significant success in various industrial tasks and can effectively adapt to vertical domains and downstream tasks through ICL. However, with tasks becoming increasingly complex, the context length required by ICL is also getting longer, and two significant issues arise: (i) The excessively long context leads to high costs and inference delays. (ii) A substantial amount of task-irrelevant information introduced by long contexts exacerbates the "lost in the middle" problem. Recently, compressing prompts by removing tokens according to some metric obtained from some causal language models, such as llama-7b, has emerged as an effective approach to mitigate these issues. However, the metric used by prior method such as self-information or PPL do not fully align with the objective of distinuishing the most important tokens when conditioning on query. In this work, we introduce information bottleneck theory to carefully examine the properties required by the metric. Inspired by this, we use cross-attention in encoder-decoder architecture as a new metric. Our simple method leads to significantly better performance in smaller models with lower latency. We evaluate our method on four datasets: DROP, CoQA, SQuAD, and Quoref. The experimental results show that, while maintaining the same performance, our compression rate can improve by nearly 25% over previous SOTA. Remarkably, in experiments where 25% of the tokens are removed, our model's EM score for answers sometimes even exceeds that of the control group using uncompressed text as context.
Abstract:In-context learning (ICL) capabilities are foundational to the success of large language models (LLMs). Recently, context compression has attracted growing interest since it can largely reduce reasoning complexities and computation costs of LLMs. In this paper, we introduce a novel Query-gUIded aTtention cOmpression (QUITO) method, which leverages attention of the question over the contexts to filter useless information. Specifically, we take a trigger token to calculate the attention distribution of the context in response to the question. Based on the distribution, we propose three different filtering methods to satisfy the budget constraints of the context length. We evaluate the QUITO using two widely-used datasets, namely, NaturalQuestions and ASQA. Experimental results demonstrate that QUITO significantly outperforms established baselines across various datasets and downstream LLMs, underscoring its effectiveness. Our code is available at https://github.com/Wenshansilvia/attention_compressor.
Abstract:Generative retrieval uses differentiable search indexes to directly generate relevant document identifiers in response to a query. Recent studies have highlighted the potential of a strong generative retrieval model, trained with carefully crafted pre-training tasks, to enhance downstream retrieval tasks via fine-tuning. However, the full power of pre-training for generative retrieval remains underexploited due to its reliance on pre-defined static document identifiers, which may not align with evolving model parameters. In this work, we introduce BootRet, a bootstrapped pre-training method for generative retrieval that dynamically adjusts document identifiers during pre-training to accommodate the continuing memorization of the corpus. BootRet involves three key training phases: (i) initial identifier generation, (ii) pre-training via corpus indexing and relevance prediction tasks, and (iii) bootstrapping for identifier updates. To facilitate the pre-training phase, we further introduce noisy documents and pseudo-queries, generated by large language models, to resemble semantic connections in both indexing and retrieval tasks. Experimental results demonstrate that BootRet significantly outperforms existing pre-training generative retrieval baselines and performs well even in zero-shot settings.
Abstract:Recent advances in neural information retrieval (IR) models have significantly enhanced their effectiveness over various IR tasks. The robustness of these models, essential for ensuring their reliability in practice, has also garnered significant attention. With a wide array of research on robust IR being proposed, we believe it is the opportune moment to consolidate the current status, glean insights from existing methodologies, and lay the groundwork for future development. We view the robustness of IR to be a multifaceted concept, emphasizing its necessity against adversarial attacks, out-of-distribution (OOD) scenarios and performance variance. With a focus on adversarial and OOD robustness, we dissect robustness solutions for dense retrieval models (DRMs) and neural ranking models (NRMs), respectively, recognizing them as pivotal components of the neural IR pipeline. We provide an in-depth discussion of existing methods, datasets, and evaluation metrics, shedding light on challenges and future directions in the era of large language models. To the best of our knowledge, this is the first comprehensive survey on the robustness of neural IR models, and we will also be giving our first tutorial presentation at SIGIR 2024 \url{https://sigir2024-robust-information-retrieval.github.io}. Along with the organization of existing work, we introduce a Benchmark for robust IR (BestIR), a heterogeneous evaluation benchmark for robust neural information retrieval, which is publicly available at \url{https://github.com/Davion-Liu/BestIR}. We hope that this study provides useful clues for future research on the robustness of IR models and helps to develop trustworthy search engines \url{https://github.com/Davion-Liu/Awesome-Robustness-in-Information-Retrieval}.
Abstract:Adversarial ranking attacks have gained increasing attention due to their success in probing vulnerabilities, and, hence, enhancing the robustness, of neural ranking models. Conventional attack methods employ perturbations at a single granularity, e.g., word or sentence level, to target documents. However, limiting perturbations to a single level of granularity may reduce the flexibility of adversarial examples, thereby diminishing the potential threat of the attack. Therefore, we focus on generating high-quality adversarial examples by incorporating multi-granular perturbations. Achieving this objective involves tackling a combinatorial explosion problem, which requires identifying an optimal combination of perturbations across all possible levels of granularity, positions, and textual pieces. To address this challenge, we transform the multi-granular adversarial attack into a sequential decision-making process, where perturbations in the next attack step build on the perturbed document in the current attack step. Since the attack process can only access the final state without direct intermediate signals, we use reinforcement learning to perform multi-granular attacks. During the reinforcement learning process, two agents work cooperatively to identify multi-granular vulnerabilities as attack targets and organize perturbation candidates into a final perturbation sequence. Experimental results show that our attack method surpasses prevailing baselines in both attack effectiveness and imperceptibility.