Abstract:In this paper, we aim to enhance the robustness of Universal Information Extraction (UIE) by introducing a new benchmark dataset, a comprehensive evaluation, and a feasible solution. Existing robust benchmark datasets have two key limitations: 1) They generate only a limited range of perturbations for a single Information Extraction (IE) task, which fails to evaluate the robustness of UIE models effectively; 2) They rely on small models or handcrafted rules to generate perturbations, often resulting in unnatural adversarial examples. Considering the powerful generation capabilities of Large Language Models (LLMs), we introduce a new benchmark dataset for Robust UIE, called RUIE-Bench, which utilizes LLMs to generate more diverse and realistic perturbations across different IE tasks. Based on this dataset, we comprehensively evaluate existing UIE models and reveal that both LLM-based models and other models suffer from significant performance drops. To improve robustness and reduce training costs, we propose a data-augmentation solution that dynamically selects hard samples for iterative training based on the model's inference loss. Experimental results show that training with only \textbf{15\%} of the data leads to an average \textbf{7.5\%} relative performance improvement across three IE tasks.
Abstract:Table retrieval, essential for accessing information through tabular data, is less explored compared to text retrieval. The row/column structure and distinct fields of tables (including titles, headers, and cells) present unique challenges. For example, different table fields have varying matching preferences: cells may favor finer-grained (word/phrase level) matching over broader (sentence/passage level) matching due to their fragmented and detailed nature, unlike titles. This necessitates a table-specific retriever to accommodate the various matching needs of each table field. Therefore, we introduce a Table-tailored HYbrid Matching rEtriever (THYME), which approaches table retrieval from a field-aware hybrid matching perspective. Empirical results on two table retrieval benchmarks, NQ-TABLES and OTT-QA, show that THYME significantly outperforms state-of-the-art baselines. Comprehensive analyses confirm the differing matching preferences across table fields and validate the design of THYME.
Abstract:Developing a general-purpose extraction system that can extract events with massive types is a long-standing target in Event Extraction (EE). In doing so, the challenge comes from two aspects: 1) The absence of an efficient and effective annotation method. 2) The absence of a powerful extraction method can handle massive types. For the first challenge, we propose a collaborative annotation method based on Large Language Models (LLMs). Through collaboration among multiple LLMs, it first refines annotations of trigger words from distant supervision and then carries out argument annotation. Next, a voting phase consolidates the annotation preferences across different LLMs. Finally, we create the EEMT dataset, the largest EE dataset to date, featuring over 200,000 samples, 3,465 event types, and 6,297 role types. For the second challenge, we propose an LLM-based Partitioning EE method called LLM-PEE. To overcome the limited context length of LLMs, LLM-PEE first recalls candidate event types and then splits them into multiple partitions for LLMs to extract events. The results in the supervised setting show that LLM-PEE outperforms the state-of-the-art methods by 5.4 in event detection and 6.1 in argument extraction. In the zero-shot setting, LLM-PEE achieves up to 12.9 improvement compared to mainstream LLMs, demonstrating its strong generalization capabilities.
Abstract:In this paper, we aim to build an adversarially robust zero-shot image classifier. We ground our work on CLIP, a vision-language pre-trained encoder model that can perform zero-shot classification by matching an image with text prompts ``a photo of a <class-name>.''. Purification is the path we choose since it does not require adversarial training on specific attack types and thus can cope with any foreseen attacks. We then formulate purification risk as the KL divergence between the joint distributions of the purification process of denoising the adversarial samples and the attack process of adding perturbations to benign samples, through bidirectional Stochastic Differential Equations (SDEs). The final derived results inspire us to explore purification in the multi-modal latent space of CLIP. We propose two variants for our CLIPure approach: CLIPure-Diff which models the likelihood of images' latent vectors with the DiffusionPrior module in DaLLE-2 (modeling the generation process of CLIP's latent vectors), and CLIPure-Cos which models the likelihood with the cosine similarity between the embeddings of an image and ``a photo of a.''. As far as we know, CLIPure is the first purification method in multi-modal latent space and CLIPure-Cos is the first purification method that is not based on generative models, which substantially improves defense efficiency. We conducted extensive experiments on CIFAR-10, ImageNet, and 13 datasets that previous CLIP-based defense methods used for evaluating zero-shot classification robustness. Results show that CLIPure boosts the SOTA robustness by a large margin, e.g., from 71.7% to 91.1% on CIFAR10, from 59.6% to 72.6% on ImageNet, and 108% relative improvements of average robustness on the 13 datasets over previous SOTA. The code is available at https://github.com/TMLResearchGroup-CAS/CLIPure.
Abstract:Commonsense plausibility estimation is critical for evaluating language models (LMs), yet existing generative approaches--reliant on likelihoods or verbalized judgments--struggle with fine-grained discrimination. In this paper, we propose ComPaSS, a novel discriminative framework that quantifies commonsense plausibility by measuring semantic shifts when augmenting sentences with commonsense-related information. Plausible augmentations induce minimal shifts in semantics, while implausible ones result in substantial deviations. Evaluations on two types of fine-grained commonsense plausibility estimation tasks across different backbones, including LLMs and vision-language models (VLMs), show that ComPaSS consistently outperforms baselines. It demonstrates the advantage of discriminative approaches over generative methods in fine-grained commonsense plausibility evaluation. Experiments also show that (1) VLMs yield superior performance to LMs, when integrated with ComPaSS, on vision-grounded commonsense tasks. (2) contrastive pre-training sharpens backbone models' ability to capture semantic nuances, thereby further enhancing ComPaSS.
Abstract:\Ac{RAG} has emerged as a crucial technique for enhancing large models with real-time and domain-specific knowledge. While numerous improvements and open-source tools have been proposed to refine the \ac{RAG} framework for accuracy, relatively little attention has been given to improving the trustworthiness of generated results. To address this gap, we introduce TrustRAG, a novel framework that enhances \ac{RAG} from three perspectives: indexing, retrieval, and generation. Specifically, in the indexing stage, we propose a semantic-enhanced chunking strategy that incorporates hierarchical indexing to supplement each chunk with contextual information, ensuring semantic completeness. In the retrieval stage, we introduce a utility-based filtering mechanism to identify high-quality information, supporting answer generation while reducing input length. In the generation stage, we propose fine-grained citation enhancement, which detects opinion-bearing sentences in responses and infers citation relationships at the sentence-level, thereby improving citation accuracy. We open-source the TrustRAG framework and provide a demonstration studio designed for excerpt-based question answering tasks \footnote{https://huggingface.co/spaces/golaxy/TrustRAG}. Based on these, we aim to help researchers: 1) systematically enhancing the trustworthiness of \ac{RAG} systems and (2) developing their own \ac{RAG} systems with more reliable outputs.
Abstract:Most existing unbiased learning-to-rank (ULTR) approaches are based on the user examination hypothesis, which assumes that users will click a result only if it is both relevant and observed (typically modeled by position). However, in real-world scenarios, users often click only one or two results after examining multiple relevant options, due to limited patience or because their information needs have already been satisfied. Motivated by this, we propose a query-level click propensity model to capture the probability that users will click on different result lists, allowing for non-zero probabilities that users may not click on an observed relevant result. We hypothesize that this propensity increases when more potentially relevant results are present, and refer to this user behavior as relevance saturation bias. Our method introduces a Dual Inverse Propensity Weighting (DualIPW) mechanism -- combining query-level and position-level IPW -- to address both relevance saturation and position bias. Through theoretical derivation, we prove that DualIPW can learn an unbiased ranking model. Experiments on the real-world Baidu-ULTR dataset demonstrate that our approach significantly outperforms state-of-the-art ULTR baselines. The code and dataset information can be found at https://github.com/Trustworthy-Information-Access/DualIPW.
Abstract:Large language models (LLMs) exhibit impressive performance across diverse tasks but often struggle to accurately gauge their knowledge boundaries, leading to confident yet incorrect responses. This paper explores leveraging LLMs' internal states to enhance their perception of knowledge boundaries from efficiency and risk perspectives. We investigate whether LLMs can estimate their confidence using internal states before response generation, potentially saving computational resources. Our experiments on datasets like Natural Questions, HotpotQA, and MMLU reveal that LLMs demonstrate significant pre-generation perception, which is further refined post-generation, with perception gaps remaining stable across varying conditions. To mitigate risks in critical domains, we introduce Consistency-based Confidence Calibration ($C^3$), which assesses confidence consistency through question reformulation. $C^3$ significantly improves LLMs' ability to recognize their knowledge gaps, enhancing the unknown perception rate by 5.6\% on NQ and 4.9\% on HotpotQA. Our findings suggest that pre-generation confidence estimation can optimize efficiency, while $C^3$ effectively controls output risks, advancing the reliability of LLMs in practical applications.
Abstract:In book search, relevant book information should be returned in response to a query. Books contain complex, multi-faceted information such as metadata, outlines, and main text, where the outline provides hierarchical information between chapters and sections. Generative retrieval (GR) is a new retrieval paradigm that consolidates corpus information into a single model to generate identifiers of documents that are relevant to a given query. How can GR be applied to book search? Directly applying GR to book search is a challenge due to the unique characteristics of book search: The model needs to retain the complex, multi-faceted information of the book, which increases the demand for labeled data. Splitting book information and treating it as a collection of separate segments for learning might result in a loss of hierarchical information. We propose an effective Generative retrieval framework for Book Search (GBS) that features two main components: data augmentation and outline-oriented book encoding. For data augmentation, GBS constructs multiple query-book pairs for training; it constructs multiple book identifiers based on the outline, various forms of book contents, and simulates real book retrieval scenarios with varied pseudo-queries. This includes coverage-promoting book identifier augmentation, allowing the model to learn to index effectively, and diversity-enhanced query augmentation, allowing the model to learn to retrieve effectively. Outline-oriented book encoding improves length extrapolation through bi-level positional encoding and retentive attention mechanisms to maintain context over long sequences. Experiments on a proprietary Baidu dataset demonstrate that GBS outperforms strong baselines, achieving a 9.8\% improvement in terms of MRR@20, over the state-of-the-art RIPOR method...
Abstract:Generative information retrieval methods retrieve documents by directly generating their identifiers. Much effort has been devoted to developing effective generative IR models. Less attention has been paid to the robustness of these models. It is critical to assess the out-of-distribution (OOD) generalization of generative IR models, i.e., how would such models generalize to new distributions? To answer this question, we focus on OOD scenarios from four perspectives in retrieval problems: (i)query variations; (ii)unseen query types; (iii)unseen tasks; and (iv)corpus expansion. Based on this taxonomy, we conduct empirical studies to analyze the OOD robustness of representative generative IR models against dense retrieval models. Our empirical results indicate that the OOD robustness of generative IR models is in need of improvement. By inspecting the OOD robustness of generative IR models we aim to contribute to the development of more reliable IR models. The code is available at \url{https://github.com/Davion-Liu/GR_OOD}.