Abstract:Empirical evidence suggests that LLMs exhibit spontaneous cross-lingual alignment. Our findings suggest that although LLMs also demonstrate promising cross-lingual alignment in Information Extraction, there remains significant imbalance across languages, revealing an underlying deficiency in the IE alignment. To address this issue, we propose AlignXIE, a powerful code-based LLM that significantly enhances cross-lingual IE alignment through two strategies. Firstly, AlignXIE formulates IE across different languages, especially non-English ones, as code generation tasks, standardizing the representation of various schemas using Python classes to ensure consistency of the same ontology in different languages and align the schema. Secondly, it incorporates an IE cross-lingual alignment phase through a translated instance prediction task proposed in this paper to align the extraction process, utilizing ParallelNER, an IE bilingual parallel dataset with 257,190 samples, generated by our proposed LLM-based automatic pipeline for IE parallel data construction, with manual annotation to ensure quality. Ultimately, we obtain AlignXIE through multilingual IE instruction tuning. Although without training in 9 unseen languages, AlignXIE surpasses ChatGPT by $30.17\%$ and SoTA by $20.03\%$, thereby demonstrating superior cross-lingual IE capabilities. Comprehensive evaluations on 63 IE benchmarks in Chinese and English under various settings, demonstrate that AlignXIE significantly enhances cross-lingual and multilingual IE through boosting the IE alignment.
Abstract:Despite ongoing efforts to defend neural classifiers from adversarial attacks, they remain vulnerable, especially to unseen attacks. In contrast, humans are difficult to be cheated by subtle manipulations, since we make judgments only based on essential factors. Inspired by this observation, we attempt to model label generation with essential label-causative factors and incorporate label-non-causative factors to assist data generation. For an adversarial example, we aim to discriminate the perturbations as non-causative factors and make predictions only based on the label-causative factors. Concretely, we propose a casual diffusion model (CausalDiff) that adapts diffusion models for conditional data generation and disentangles the two types of casual factors by learning towards a novel casual information bottleneck objective. Empirically, CausalDiff has significantly outperformed state-of-the-art defense methods on various unseen attacks, achieving an average robustness of 86.39% (+4.01%) on CIFAR-10, 56.25% (+3.13%) on CIFAR-100, and 82.62% (+4.93%) on GTSRB (German Traffic Sign Recognition Benchmark).
Abstract:The advancement of LLMs has significantly boosted the performance of complex long-form question answering tasks. However, one prominent issue of LLMs is the generated "hallucination" responses that are not factual. Consequently, attribution for each claim in responses becomes a common solution to improve the factuality and verifiability. Existing researches mainly focus on how to provide accurate citations for the response, which largely overlook the importance of identifying the claims or statements for each response. To bridge this gap, we introduce a new claim decomposition benchmark, which requires building system that can identify atomic and checkworthy claims for LLM responses. Specifically, we present the Chinese Atomic Claim Decomposition Dataset (CACDD), which builds on the WebCPM dataset with additional expert annotations to ensure high data quality. The CACDD encompasses a collection of 500 human-annotated question-answer pairs, including a total of 4956 atomic claims. We further propose a new pipeline for human annotation and describe the challenges of this task. In addition, we provide experiment results on zero-shot, few-shot and fine-tuned LLMs as baselines. The results show that the claim decomposition is highly challenging and requires further explorations. All code and data are publicly available at \url{https://github.com/FBzzh/CACDD}.
Abstract:Retrieval-augmented generation (RAG) appears as a promising method to alleviate the "hallucination" problem in large language models (LLMs), since it can incorporate external traceable resources for response generation. The essence of RAG in combating the hallucination issue lies in accurately attributing claims in responses to the corresponding retrieved documents. However, most of existing works focus on improving the quality of generated responses from the LLM, while largely overlooked its ability to attribute sources accurately. In this study, we conduct a systematic analysis about the capabilities of LLMs in generating citations within response generation, and further introduce a novel method to enhance their citation generation abilities. Specifically, we evaluate both the correctness and citation quality for seven widely-used LLMs on two benchmark datasets. Meanwhile, we introduce new citation evaluation metrics to eliminate the over-penalization of unnecessary and excessive citations in existing metrics. Furthermore, we propose a Generate-then-Refine method that completes relevant citations and removes irrelevant ones without altering the response text. The results on WebGLM-QA, ASQA and ELI5 datasets show that our method substantially improves the quality of citations in responses generated by LLMs.
Abstract:Generative retrieval represents a novel approach to information retrieval. It uses an encoder-decoder architecture to directly produce relevant document identifiers (docids) for queries. While this method offers benefits, current approaches are limited to scenarios with binary relevance data, overlooking the potential for documents to have multi-graded relevance. Extending generative retrieval to accommodate multi-graded relevance poses challenges, including the need to reconcile likelihood probabilities for docid pairs and the possibility of multiple relevant documents sharing the same identifier. To address these challenges, we introduce a framework called GRaded Generative Retrieval (GR$^2$). GR$^2$ focuses on two key components: ensuring relevant and distinct identifiers, and implementing multi-graded constrained contrastive training. First, we create identifiers that are both semantically relevant and sufficiently distinct to represent individual documents effectively. This is achieved by jointly optimizing the relevance and distinctness of docids through a combination of docid generation and autoencoder models. Second, we incorporate information about the relationship between relevance grades to guide the training process. We use a constrained contrastive training strategy to bring the representations of queries and the identifiers of their relevant documents closer together, based on their respective relevance grades. Extensive experiments on datasets with both multi-graded and binary relevance demonstrate the effectiveness of GR$^2$.
Abstract:Retrieval-augmented generation (RAG) has emerged as a popular solution to mitigate the hallucination issues of large language models. However, existing studies on RAG seldom address the issue of predictive uncertainty, i.e., how likely it is that a RAG model's prediction is incorrect, resulting in uncontrollable risks in real-world applications. In this work, we emphasize the importance of risk control, ensuring that RAG models proactively refuse to answer questions with low confidence. Our research identifies two critical latent factors affecting RAG's confidence in its predictions: the quality of the retrieved results and the manner in which these results are utilized. To guide RAG models in assessing their own confidence based on these two latent factors, we develop a counterfactual prompting framework that induces the models to alter these factors and analyzes the effect on their answers. We also introduce a benchmarking procedure to collect answers with the option to abstain, facilitating a series of experiments. For evaluation, we introduce several risk-related metrics and the experimental results demonstrate the effectiveness of our approach.
Abstract:Generative LLM have achieved significant success in various industrial tasks and can effectively adapt to vertical domains and downstream tasks through ICL. However, with tasks becoming increasingly complex, the context length required by ICL is also getting longer, and two significant issues arise: (i) The excessively long context leads to high costs and inference delays. (ii) A substantial amount of task-irrelevant information introduced by long contexts exacerbates the "lost in the middle" problem. Recently, compressing prompts by removing tokens according to some metric obtained from some causal language models, such as llama-7b, has emerged as an effective approach to mitigate these issues. However, the metric used by prior method such as self-information or PPL do not fully align with the objective of distinuishing the most important tokens when conditioning on query. In this work, we introduce information bottleneck theory to carefully examine the properties required by the metric. Inspired by this, we use cross-attention in encoder-decoder architecture as a new metric. Our simple method leads to significantly better performance in smaller models with lower latency. We evaluate our method on four datasets: DROP, CoQA, SQuAD, and Quoref. The experimental results show that, while maintaining the same performance, our compression rate can improve by nearly 25% over previous SOTA. Remarkably, in experiments where 25% of the tokens are removed, our model's EM score for answers sometimes even exceeds that of the control group using uncompressed text as context.
Abstract:Unbiased Learning to Rank (ULTR) aims to leverage biased implicit user feedback (e.g., click) to optimize an unbiased ranking model. The effectiveness of the existing ULTR methods has primarily been validated on synthetic datasets. However, their performance on real-world click data remains unclear. Recently, Baidu released a large publicly available dataset of their web search logs. Subsequently, the NTCIR-17 ULTRE-2 task released a subset dataset extracted from it. We conduct experiments on commonly used or effective ULTR methods on this subset to determine whether they maintain their effectiveness. In this paper, we propose a Contextual Dual Learning Algorithm with Listwise Distillation (CDLA-LD) to simultaneously address both position bias and contextual bias. We utilize a listwise-input ranking model to obtain reconstructed feature vectors incorporating local contextual information and employ the Dual Learning Algorithm (DLA) method to jointly train this ranking model and a propensity model to address position bias. As this ranking model learns the interaction information within the documents list of the training set, to enhance the ranking model's generalization ability, we additionally train a pointwise-input ranking model to learn the listwise-input ranking model's capability for relevance judgment in a listwise manner. Extensive experiments and analysis confirm the effectiveness of our approach.
Abstract:Large language models (LLMs) have been found to produce hallucinations when the question exceeds their internal knowledge boundaries. A reliable model should have a clear perception of its knowledge boundaries, providing correct answers within its scope and refusing to answer when it lacks knowledge. Existing research on LLMs' perception of their knowledge boundaries typically uses either the probability of the generated tokens or the verbalized confidence as the model's confidence in its response. However, these studies overlook the differences and connections between the two. In this paper, we conduct a comprehensive analysis and comparison of LLMs' probabilistic perception and verbalized perception of their factual knowledge boundaries. First, we investigate the pros and cons of these two perceptions. Then, we study how they change under questions of varying frequencies. Finally, we measure the correlation between LLMs' probabilistic confidence and verbalized confidence. Experimental results show that 1) LLMs' probabilistic perception is generally more accurate than verbalized perception but requires an in-domain validation set to adjust the confidence threshold. 2) Both perceptions perform better on less frequent questions. 3) It is challenging for LLMs to accurately express their internal confidence in natural language.
Abstract:Adversarial purification is one of the promising approaches to defend neural networks against adversarial attacks. Recently, methods utilizing diffusion probabilistic models have achieved great success for adversarial purification in image classification tasks. However, such methods fall into the dilemma of balancing the needs for noise removal and information preservation. This paper points out that existing adversarial purification methods based on diffusion models gradually lose sample information during the core denoising process, causing occasional label shift in subsequent classification tasks. As a remedy, we suggest to suppress such information loss by introducing guidance from the classifier confidence. Specifically, we propose Classifier-cOnfidence gUided Purification (COUP) algorithm, which purifies adversarial examples while keeping away from the classifier decision boundary. Experimental results show that COUP can achieve better adversarial robustness under strong attack methods.