Abstract:Achieving human-level intelligence requires refining the transition from the fast, intuitive System 1 to the slower, more deliberate System 2 reasoning. While System 1 excels in quick, heuristic decisions, System 2 relies on logical reasoning for more accurate judgments and reduced biases. Foundational Large Language Models (LLMs) excel at fast decision-making but lack the depth for complex reasoning, as they have not yet fully embraced the step-by-step analysis characteristic of true System 2 thinking. Recently, reasoning LLMs like OpenAI's o1/o3 and DeepSeek's R1 have demonstrated expert-level performance in fields such as mathematics and coding, closely mimicking the deliberate reasoning of System 2 and showcasing human-like cognitive abilities. This survey begins with a brief overview of the progress in foundational LLMs and the early development of System 2 technologies, exploring how their combination has paved the way for reasoning LLMs. Next, we discuss how to construct reasoning LLMs, analyzing their features, the core methods enabling advanced reasoning, and the evolution of various reasoning LLMs. Additionally, we provide an overview of reasoning benchmarks, offering an in-depth comparison of the performance of representative reasoning LLMs. Finally, we explore promising directions for advancing reasoning LLMs and maintain a real-time \href{https://github.com/zzli2022/Awesome-Slow-Reason-System}{GitHub Repository} to track the latest developments. We hope this survey will serve as a valuable resource to inspire innovation and drive progress in this rapidly evolving field.
Abstract:Large vision language models (LVLMs) have improved the document understanding capabilities remarkably, enabling the handling of complex document elements, longer contexts, and a wider range of tasks. However, existing document understanding benchmarks have been limited to handling only a small number of pages and fail to provide a comprehensive analysis of layout elements locating. In this paper, we first define three primary task categories: Long Document Understanding, numerical Reasoning, and cross-element Locating, and then propose a comprehensive benchmark, LongDocURL, integrating above three primary tasks and comprising 20 sub-tasks categorized based on different primary tasks and answer evidences. Furthermore, we develop a semi-automated construction pipeline and collect 2,325 high-quality question-answering pairs, covering more than 33,000 pages of documents, significantly outperforming existing benchmarks. Subsequently, we conduct comprehensive evaluation experiments on both open-source and closed-source models across 26 different configurations, revealing critical performance gaps in this field.
Abstract:Geometry problem solving (GPS) requires capacities of multi-modal understanding, multi-hop reasoning and theorem knowledge application. In this paper, we propose a neural-symbolic model for plane geometry problem solving (PGPS), named PGPSNet-v2, with three key steps: modal fusion, reasoning process and knowledge verification. In modal fusion, we leverage textual clauses to express fine-grained structural and semantic content of geometry diagram, and fuse diagram with textual problem efficiently through structural-semantic pre-training. For reasoning, we design an explicable solution program to describe the geometric reasoning process, and employ a self-limited decoder to generate solution program autoregressively. To reduce solution errors, a multi-level theorem verifier is proposed to eliminate solutions that do not match geometric principles, alleviating the hallucination of the neural model. We also construct a large-scale geometry problem dataset called PGPS9K, containing fine-grained annotations of textual clauses, solution program and involved knowledge tuples. Extensive experiments on datasets Geometry3K and PGPS9K show that our PGPSNet solver outperforms existing symbolic and neural solvers in GPS performance, while maintaining good explainability and reliability, and the solver components (fusion, reasoning, verification) are all justified effective.
Abstract:Geometry problem solving (GPS) is a challenging mathematical reasoning task requiring multi-modal understanding, fusion and reasoning. Existing neural solvers take GPS as a vision-language task but be short in the representation of geometry diagrams which carry rich and complex layout information. In this paper, we propose a layout-aware neural solver named LANS, integrated with two new modules: multimodal layout-aware pre-trained language model (MLA-PLM) and layout-aware fusion attention (LA-FA). MLA-PLM adopts structural and semantic pre-training (SSP) to implement global relationship modeling, and point matching pre-training (PMP) to achieve alignment between visual points and textual points. LA-FA employs a layout-aware attention mask to realize point-guided cross-modal fusion for further boosting layout awareness of LANS. Extensive experiments on datasets Geometry3K and PGPS9K validate the effectiveness of the layout-aware modules and superior problem solving performance of our LANS solver, over existing symbolic solvers and neural solvers. The code will make public available soon.