Abstract:Understanding camera dynamics is a fundamental pillar of video spatial intelligence. However, existing multimodal models predominantly treat this task as a black-box classification, often confusing physically distinct motions by relying on superficial visual patterns rather than geometric cues. We present CamReasoner, a framework that reformulates camera movement understanding as a structured inference process to bridge the gap between perception and cinematic logic. Our approach centers on the Observation-Thinking-Answer (O-T-A) paradigm, which compels the model to decode spatio-temporal cues such as trajectories and view frustums within an explicit reasoning block. To instill this capability, we construct a Large-scale Inference Trajectory Suite comprising 18k SFT reasoning chains and 38k RL feedback samples. Notably, we are the first to employ RL for logical alignment in this domain, ensuring motion inferences are grounded in physical geometry rather than contextual guesswork. By applying Reinforcement Learning to the Observation-Think-Answer (O-T-A) reasoning paradigm, CamReasoner effectively suppresses hallucinations and achieves state-of-the-art performance across multiple benchmarks.
Abstract:Diffusion models have achieved remarkable progress in image generation, but their increasing deployment raises serious concerns about privacy. In particular, fine-tuned models are highly vulnerable, as they are often fine-tuned on small and private datasets. Membership inference attacks (MIAs) are used to assess privacy risks by determining whether a specific sample was part of a model's training data. Existing MIAs against diffusion models either assume obtaining the intermediate results or require auxiliary datasets for training the shadow model. In this work, we utilized a critical yet overlooked vulnerability: the widely used noise schedules fail to fully eliminate semantic information in the images, resulting in residual semantic signals even at the maximum noise step. We empirically demonstrate that the fine-tuned diffusion model captures hidden correlations between the residual semantics in initial noise and the original images. Building on this insight, we propose a simple yet effective membership inference attack, which injects semantic information into the initial noise and infers membership by analyzing the model's generation result. Extensive experiments demonstrate that the semantic initial noise can strongly reveal membership information, highlighting the vulnerability of diffusion models to MIAs.
Abstract:Long-form deep research requires multi-faceted investigations over extended horizons to get a comprehensive report. When handling such complex tasks, existing agents manage context at the subtask level to overcome linear context accumulation and information loss. However, they still adhere to a single context window and sequential execution paradigm, which results in mutual interference and blocking behavior, restricting scalability and adaptability. To address this issue, this paper introduces Self-Manager, a parallel agent loop that enables asynchronous and concurrent execution. The main thread can create multiple subthreads, each with its own isolated context, and manage them iteratively through Thread Control Blocks, allowing for more focused and flexible parallel agent execution. To assess its effectiveness, we benchmark Self-Manager on DeepResearch Bench, where it consistently outperforms existing single-agent loop baselines across all metrics. Furthermore, we conduct extensive analytical experiments to demonstrate the necessity of Self-Manager's design choices, as well as its advantages in contextual capacity, efficiency, and generalization.
Abstract:Executable SQL generation is typically studied in text-to-SQL settings, where tables are provided as fully linearized textual schemas and contents. While effective, this formulation assumes access to structured text and incurs substantial token overhead, which is misaligned with many real-world scenarios where tables appear as visual artifacts in documents or webpages. We investigate whether compact optical representations can serve as an efficient interface for executable semantic parsing. We present OptiSQL, a vision-driven framework that generates executable SQL directly from table images and natural language questions using compact optical tokens. OptiSQL leverages an OCR-oriented visual encoder to compress table structure and content into a small set of optical tokens and fine-tunes a pretrained decoder for SQL generation while freezing the encoder to isolate representation sufficiency. Experiments on a visualized version of Spider 2.0-Snow show that OptiSQL retains strong execution accuracy while reducing table input tokens by an order of magnitude. Robustness analyses further demonstrate that optical tokens preserve essential structural information under visual perturbations.




Abstract:Unexploitable example generation aims to transform personal images into their unexploitable (unlearnable) versions before they are uploaded online, thereby preventing unauthorized exploitation of online personal images. Recently, this task has garnered significant research attention due to its critical relevance to personal data privacy. Yet, despite recent progress, existing methods for this task can still suffer from limited practical applicability, as they can fail to generate examples that are broadly unexploitable across different real-world computer vision tasks. To deal with this problem, in this work, we propose a novel Meta Cross-Task Unexploitable Example Generation (MCT-UEG) framework. At the core of our framework, to optimize the unexploitable example generator for effectively producing broadly unexploitable examples, we design a flat-minima-oriented meta training and testing scheme. Extensive experiments show the efficacy of our framework.
Abstract:Large Audio-Language Models (LALMs) have recently shown impressive progress in speech recognition, audio captioning, and auditory question answering. Yet, whether these models can perceive spatial dynamics, particularly the motion of sound sources, remains unclear. In this work, we uncover a systematic motion perception deficit in current ALLMs. To investigate this issue, we introduce AMPBench, the first benchmark explicitly designed to evaluate auditory motion understanding. AMPBench introduces a controlled question-answering benchmark designed to evaluate whether Audio-Language Models (LALMs) can infer the direction and trajectory of moving sound sources from binaural audio. Comprehensive quantitative and qualitative analyses reveal that current models struggle to reliably recognize motion cues or distinguish directional patterns. The average accuracy remains below 50%, underscoring a fundamental limitation in auditory spatial reasoning. Our study highlights a fundamental gap between human and model auditory spatial reasoning, providing both a diagnostic tool and new insight for enhancing spatial cognition in future Audio-Language Models.
Abstract:Video LLMs suffer from temporal inconsistency: small shifts in frame timing can flip attention and suppress relevant frames. We trace this instability to the common extension of Rotary Position Embeddings to video through multimodal RoPE. The induced inverse Fourier time kernel exhibits frame-scale ripples that multiply adjacent frames by different factors, which perturbs attention that should otherwise be governed by the raw query key inner product. We present Phase Aggregated Smoothing (PAS), a simple, training-free mechanism that applies small opposed phase offsets across heads and then aggregates their outputs. PAS preserves the per-head spectrum magnitude, while the aggregation effectively smooths the temporal kernel and reduces phase sensitivity without changing the positional encoding structure. Our analysis shows that the RoPE rotated logit can be approximated as a content dot product scaled by a time kernel; smoothing this kernel yields Lipschitz stability of attention to small temporal shifts; multi phase averaging attenuates high frequency ripples while preserving per-head spectra under Nyquist-valid sampling. Experiments on multiple video understanding benchmarks under matched token budgets show consistent improvements with negligible computational overhead. PAS provides a plug and play upgrade for robust temporal encoding in Video LLMs.
Abstract:The advancement of large language models (LLMs) has catalyzed a paradigm shift from code generation assistance to autonomous coding agents, enabling a novel development methodology termed "Vibe Coding" where developers validate AI-generated implementations through outcome observation rather than line-by-line code comprehension. Despite its transformative potential, the effectiveness of this emergent paradigm remains under-explored, with empirical evidence revealing unexpected productivity losses and fundamental challenges in human-AI collaboration. To address this gap, this survey provides the first comprehensive and systematic review of Vibe Coding with large language models, establishing both theoretical foundations and practical frameworks for this transformative development approach. Drawing from systematic analysis of over 1000 research papers, we survey the entire vibe coding ecosystem, examining critical infrastructure components including LLMs for coding, LLM-based coding agent, development environment of coding agent, and feedback mechanisms. We first introduce Vibe Coding as a formal discipline by formalizing it through a Constrained Markov Decision Process that captures the dynamic triadic relationship among human developers, software projects, and coding agents. Building upon this theoretical foundation, we then synthesize existing practices into five distinct development models: Unconstrained Automation, Iterative Conversational Collaboration, Planning-Driven, Test-Driven, and Context-Enhanced Models, thus providing the first comprehensive taxonomy in this domain. Critically, our analysis reveals that successful Vibe Coding depends not merely on agent capabilities but on systematic context engineering, well-established development environments, and human-agent collaborative development models.
Abstract:Video-to-Audio generation has made remarkable strides in automatically synthesizing sound for video. However, existing evaluation metrics, which focus on semantic and temporal alignment, overlook a critical failure mode: models often generate acoustic events, particularly speech and music, that have no corresponding visual source. We term this phenomenon Insertion Hallucination and identify it as a systemic risk driven by dataset biases, such as the prevalence of off-screen sounds, that remains completely undetected by current metrics. To address this challenge, we first develop a systematic evaluation framework that employs a majority-voting ensemble of multiple audio event detectors. We also introduce two novel metrics to quantify the prevalence and severity of this issue: IH@vid (the fraction of videos with hallucinations) and IH@dur (the fraction of hallucinated duration). Building on this, we propose Posterior Feature Correction, a novel training-free inference-time method that mitigates IH. PFC operates in a two-pass process: it first generates an initial audio output to detect hallucinated segments, and then regenerates the audio after masking the corresponding video features at those timestamps. Experiments on several mainstream V2A benchmarks first reveal that state-of-the-art models suffer from severe IH. In contrast, our PFC method reduces both the prevalence and duration of hallucinations by over 50\% on average, without degrading, and in some cases even improving, conventional metrics for audio quality and temporal synchronization. Our work is the first to formally define, systematically measure, and effectively mitigate Insertion Hallucination, paving the way for more reliable and faithful V2A models.




Abstract:Recent advances demonstrate that multimodal large language models (MLLMs) exhibit strong multimodal in-context learning (ICL) capabilities, enabling them to adapt to novel vision-language tasks from a few contextual examples. However, existing ICL approaches face challenges in reconciling scalability with robustness across diverse tasks and noisy contextual examples: manually selecting examples produces clean contexts but is labor-intensive and task-specific, while similarity-based retrieval improves scalability but could introduce irrelevant or structurally inconsistent samples that degrade ICL performance. To address these limitations, we propose ContextNav, the first agentic framework that integrates the scalability of automated retrieval with the quality and adaptiveness of human-like curation, enabling noise-robust and dynamically optimized contextualization for multimodal ICL. ContextNav unifies context management and noise-robust contextualization within a closed-loop workflow driven by graph-based orchestration. Specifically, it builds a resource-aware multimodal embedding pipeline, maintains a retrievable vector database, and applies agentic retrieval and structural alignment to construct noise-resilient contexts. An Operational Grammar Graph (OGG) further supports adaptive workflow planning and optimization, enabling the agent to refine its operational strategies based on downstream ICL feedback. Experimental results demonstrate that ContextNav achieves state-of-the-art performance across various datasets, underscoring the promise of agentic workflows for advancing scalable and robust contextualization in multimodal ICL.