Abstract:Large language models (LLMs) have shown promise as potential knowledge bases, yet they often struggle with question-answering tasks and are prone to hallucinations. While previous research attributes these issues to knowledge gaps in the model's parameters, our investigation reveals a different phenomenon: LLMs often retain correct knowledge even when generating incorrect answers. Through analysis of model's internal representations, we find that correct answers frequently appear among high-probability tokens despite not being selected as final outputs. Based on this observation, we introduce Hits@k, a new metric to assess knowledge retention independent of expression accuracy. Our extensive experiments demonstrate that LLMs store significantly more knowledge than their QA performance suggests. Building on these findings, we develop SkipUnsure, a method to improve answer accuracy by leveraging detected but unexpressed knowledge. Experiments on both open-domain and specific-domain datasets show consistent improvements, with accuracy gains of up to 11.8% on DBPedia and 6.3% on IMDB, without requiring model retraining.
Abstract:Hands are the primary means through which humans interact with the world. Reliable and always-available hand pose inference could yield new and intuitive control schemes for human-computer interactions, particularly in virtual and augmented reality. Computer vision is effective but requires one or multiple cameras and can struggle with occlusions, limited field of view, and poor lighting. Wearable wrist-based surface electromyography (sEMG) presents a promising alternative as an always-available modality sensing muscle activities that drive hand motion. However, sEMG signals are strongly dependent on user anatomy and sensor placement, and existing sEMG models have required hundreds of users and device placements to effectively generalize. To facilitate progress on sEMG pose inference, we introduce the emg2pose benchmark, the largest publicly available dataset of high-quality hand pose labels and wrist sEMG recordings. emg2pose contains 2kHz, 16 channel sEMG and pose labels from a 26-camera motion capture rig for 193 users, 370 hours, and 29 stages with diverse gestures - a scale comparable to vision-based hand pose datasets. We provide competitive baselines and challenging tasks evaluating real-world generalization scenarios: held-out users, sensor placements, and stages. emg2pose provides the machine learning community a platform for exploring complex generalization problems, holding potential to significantly enhance the development of sEMG-based human-computer interactions.
Abstract:While 3D Gaussian Splatting enables high-quality real-time rendering, existing Gaussian-based frameworks for 3D semantic segmentation still face significant challenges in boundary recognition accuracy. To address this, we propose a novel 3DGS-based framework named GradiSeg, incorporating Identity Encoding to construct a deeper semantic understanding of scenes. Our approach introduces two key modules: Identity Gradient Guided Densification (IGD) and Local Adaptive K-Nearest Neighbors (LA-KNN). The IGD module supervises gradients of Identity Encoding to refine Gaussian distributions along object boundaries, aligning them closely with boundary contours. Meanwhile, the LA-KNN module employs position gradients to adaptively establish locality-aware propagation of Identity Encodings, preventing irregular Gaussian spreads near boundaries. We validate the effectiveness of our method through comprehensive experiments. Results show that GradiSeg effectively addresses boundary-related issues, significantly improving segmentation accuracy without compromising scene reconstruction quality. Furthermore, our method's robust segmentation capability and decoupled Identity Encoding representation make it highly suitable for various downstream scene editing tasks, including 3D object removal, swapping and so on.
Abstract:Question answering is a fundamental capability of large language models (LLMs). However, when people encounter completely new knowledge texts, they often ask questions that the text cannot answer due to a lack of understanding of the knowledge. Recent research shows that large language models identify the unanswerability of questions, but they lack the ability to help people reformulate their questions. Even powerful models like GPT-3.5 perform poorly in this regard. To enhance the ability of LLMs to assist humans in reformulating questions to extract relevant knowledge from new documents, we propose a zero-shot method called DRS: Deep Question Reformulation With Structured Output. Our proposed method leverages large language models and the DFS-based algorithm to iteratively search for possible entity combinations and constrain the output with certain entities, effectively improving the capabilities of large language models in this area. Extensive experimental results show that our zero-shot DRS method significantly improves the reformulation accuracy of GPT-3.5 from 23.03% to 70.42% and effectively improves the score of open-source large language models, such as Gemma2-9B, from 26.35% to 56.75%.
Abstract:Despite inheriting security measures from underlying language models, Vision-Language Models (VLMs) may still be vulnerable to safety alignment issues. Through empirical analysis, we uncover two critical findings: scenario-matched images can significantly amplify harmful outputs, and contrary to common assumptions in gradient-based attacks, minimal loss values do not guarantee optimal attack effectiveness. Building on these insights, we introduce MLAI (Multi-Loss Adversarial Images), a novel jailbreak framework that leverages scenario-aware image generation for semantic alignment, exploits flat minima theory for robust adversarial image selection, and employs multi-image collaborative attacks for enhanced effectiveness. Extensive experiments demonstrate MLAI's significant impact, achieving attack success rates of 77.75% on MiniGPT-4 and 82.80% on LLaVA-2, substantially outperforming existing methods by margins of 34.37% and 12.77% respectively. Furthermore, MLAI shows considerable transferability to commercial black-box VLMs, achieving up to 60.11% success rate. Our work reveals fundamental visual vulnerabilities in current VLMs safety mechanisms and underscores the need for stronger defenses. Warning: This paper contains potentially harmful example text.
Abstract:Text classification involves categorizing a given text, such as determining its sentiment or identifying harmful content. With the advancement of large language models (LLMs), these models have become highly effective at performing text classification tasks. However, they still show vulnerabilities to variations in text formatting. Recent research demonstrates that modifying input formats, such as vertically aligning words for encoder-based models, can substantially lower accuracy in text classification tasks. While easily understood by humans, these inputs can significantly mislead models, posing a potential risk of bypassing detection in real-world scenarios involving harmful or sensitive information. With the expanding application of LLMs, a crucial question arises: Do decoder-based LLMs exhibit similar vulnerabilities to vertically formatted text input? In this paper, we investigate the impact of vertical text input on the performance of various LLMs across multiple text classification datasets and analyze the underlying causes. Our findings are as follows: (i) Vertical text input significantly degrades the accuracy of LLMs in text classification tasks. (ii) Chain of Thought (CoT) reasoning does not help LLMs recognize vertical input or mitigate its vulnerability, but few-shot learning with careful analysis does. (iii) We explore the underlying cause of the vulnerability by analyzing the inherent issues in tokenization and attention matrices.
Abstract:Cross-lingual summarization (CLS) aims to generate a summary for the source text in a different target language. Currently, instruction-tuned large language models (LLMs) excel at various English tasks. However, unlike languages such as English, Chinese or Spanish, for those relatively low-resource languages with limited usage or data, recent studies have shown that LLMs' performance on CLS tasks remains unsatisfactory even with few-shot settings. This raises the question: Are LLMs capable of handling cross-lingual summarization tasks for low-resource languages? To resolve this question, we fully explore the potential of large language models on cross-lingual summarization task for low-resource languages through our four-step zero-shot method: Summarization, Improvement, Translation and Refinement (SITR) with correspondingly designed prompts. We test our proposed method with multiple LLMs on two well-known cross-lingual summarization datasets with various low-resource target languages. The results show that: i) GPT-3.5 and GPT-4 significantly and consistently outperform other baselines when using our zero-shot SITR methods. ii) By employing our proposed method, we unlock the potential of LLMs, enabling them to effectively handle cross-lingual summarization tasks for relatively low-resource languages.
Abstract:The training data in large language models is key to their success, but it also presents privacy and security risks, as it may contain sensitive information. Detecting pre-training data is crucial for mitigating these concerns. Existing methods typically analyze target text in isolation or solely with non-member contexts, overlooking potential insights from simultaneously considering both member and non-member contexts. While previous work suggested that member contexts provide little information due to the minor distributional shift they induce, our analysis reveals that these subtle shifts can be effectively leveraged when contrasted with non-member contexts. In this paper, we propose Con-ReCall, a novel approach that leverages the asymmetric distributional shifts induced by member and non-member contexts through contrastive decoding, amplifying subtle differences to enhance membership inference. Extensive empirical evaluations demonstrate that Con-ReCall achieves state-of-the-art performance on the WikiMIA benchmark and is robust against various text manipulation techniques.
Abstract:To facilitate the application of motion prediction in practice, recently, the few-shot motion prediction task has attracted increasing research attention. Yet, in existing few-shot motion prediction works, a specific model that is dedicatedly trained over human motions is generally required. In this work, rather than tackling this task through training a specific human motion prediction model, we instead propose a novel FMP-OC framework. In FMP-OC, in a totally training-free manner, we enable Few-shot Motion Prediction, which is a non-language task, to be performed directly via utilizing the Off-the-shelf language model ChatGPT. Specifically, to lead ChatGPT as a language model to become an accurate motion predictor, in FMP-OC, we first introduce several novel designs to facilitate extracting implicit knowledge from ChatGPT. Moreover, we also incorporate our framework with a motion-in-context learning mechanism. Extensive experiments demonstrate the efficacy of our proposed framework.
Abstract:Recently, Gaussian Splatting, a method that represents a 3D scene as a collection of Gaussian distributions, has gained significant attention in addressing the task of novel view synthesis. In this paper, we highlight a fundamental limitation of Gaussian Splatting: its inability to accurately render discontinuities and boundaries in images due to the continuous nature of Gaussian distributions. To address this issue, we propose a novel framework enabling Gaussian Splatting to perform discontinuity-aware image rendering. Additionally, we introduce a B\'ezier-boundary gradient approximation strategy within our framework to keep the ``differentiability'' of the proposed discontinuity-aware rendering process. Extensive experiments demonstrate the efficacy of our framework.