Abstract:Executable SQL generation is typically studied in text-to-SQL settings, where tables are provided as fully linearized textual schemas and contents. While effective, this formulation assumes access to structured text and incurs substantial token overhead, which is misaligned with many real-world scenarios where tables appear as visual artifacts in documents or webpages. We investigate whether compact optical representations can serve as an efficient interface for executable semantic parsing. We present OptiSQL, a vision-driven framework that generates executable SQL directly from table images and natural language questions using compact optical tokens. OptiSQL leverages an OCR-oriented visual encoder to compress table structure and content into a small set of optical tokens and fine-tunes a pretrained decoder for SQL generation while freezing the encoder to isolate representation sufficiency. Experiments on a visualized version of Spider 2.0-Snow show that OptiSQL retains strong execution accuracy while reducing table input tokens by an order of magnitude. Robustness analyses further demonstrate that optical tokens preserve essential structural information under visual perturbations.
Abstract:Video-to-Audio generation has made remarkable strides in automatically synthesizing sound for video. However, existing evaluation metrics, which focus on semantic and temporal alignment, overlook a critical failure mode: models often generate acoustic events, particularly speech and music, that have no corresponding visual source. We term this phenomenon Insertion Hallucination and identify it as a systemic risk driven by dataset biases, such as the prevalence of off-screen sounds, that remains completely undetected by current metrics. To address this challenge, we first develop a systematic evaluation framework that employs a majority-voting ensemble of multiple audio event detectors. We also introduce two novel metrics to quantify the prevalence and severity of this issue: IH@vid (the fraction of videos with hallucinations) and IH@dur (the fraction of hallucinated duration). Building on this, we propose Posterior Feature Correction, a novel training-free inference-time method that mitigates IH. PFC operates in a two-pass process: it first generates an initial audio output to detect hallucinated segments, and then regenerates the audio after masking the corresponding video features at those timestamps. Experiments on several mainstream V2A benchmarks first reveal that state-of-the-art models suffer from severe IH. In contrast, our PFC method reduces both the prevalence and duration of hallucinations by over 50\% on average, without degrading, and in some cases even improving, conventional metrics for audio quality and temporal synchronization. Our work is the first to formally define, systematically measure, and effectively mitigate Insertion Hallucination, paving the way for more reliable and faithful V2A models.
Abstract:Video-to-audio (V2A) generation utilizes visual-only video features to produce realistic sounds that correspond to the scene. However, current V2A models often lack fine-grained control over the generated audio, especially in terms of loudness variation and the incorporation of multi-modal conditions. To overcome these limitations, we introduce Tri-Ergon, a diffusion-based V2A model that incorporates textual, auditory, and pixel-level visual prompts to enable detailed and semantically rich audio synthesis. Additionally, we introduce Loudness Units relative to Full Scale (LUFS) embedding, which allows for precise manual control of the loudness changes over time for individual audio channels, enabling our model to effectively address the intricate correlation of video and audio in real-world Foley workflows. Tri-Ergon is capable of creating 44.1 kHz high-fidelity stereo audio clips of varying lengths up to 60 seconds, which significantly outperforms existing state-of-the-art V2A methods that typically generate mono audio for a fixed duration.