Abstract:In this paper, we develop \textbf{MP-HOI}, a powerful Multi-modal Prompt-based HOI detector designed to leverage both textual descriptions for open-set generalization and visual exemplars for handling high ambiguity in descriptions, realizing HOI detection in the open world. Specifically, it integrates visual prompts into existing language-guided-only HOI detectors to handle situations where textual descriptions face difficulties in generalization and to address complex scenarios with high interaction ambiguity. To facilitate MP-HOI training, we build a large-scale HOI dataset named Magic-HOI, which gathers six existing datasets into a unified label space, forming over 186K images with 2.4K objects, 1.2K actions, and 20K HOI interactions. Furthermore, to tackle the long-tail issue within the Magic-HOI dataset, we introduce an automated pipeline for generating realistically annotated HOI images and present SynHOI, a high-quality synthetic HOI dataset containing 100K images. Leveraging these two datasets, MP-HOI optimizes the HOI task as a similarity learning process between multi-modal prompts and objects/interactions via a unified contrastive loss, to learn generalizable and transferable objects/interactions representations from large-scale data. MP-HOI could serve as a generalist HOI detector, surpassing the HOI vocabulary of existing expert models by more than 30 times. Concurrently, our results demonstrate that MP-HOI exhibits remarkable zero-shot capability in real-world scenarios and consistently achieves a new state-of-the-art performance across various benchmarks.
Abstract:Estimating the 3D structure of the human body from natural scenes is a fundamental aspect of visual perception. This task carries great importance for fields like AIGC and human-robot interaction. In practice, 3D human pose estimation in real-world settings is a critical initial step in solving this problem. However, the current datasets, often collected under controlled laboratory conditions using complex motion capture equipment and unvarying backgrounds, are insufficient. The absence of real-world datasets is stalling the progress of this crucial task. To facilitate the development of 3D pose estimation, we present FreeMan, the first large-scale, real-world multi-view dataset. FreeMan was captured by synchronizing 8 smartphones across diverse scenarios. It comprises 11M frames from 8000 sequences, viewed from different perspectives. These sequences cover 40 subjects across 10 different scenarios, each with varying lighting conditions. We have also established an automated, precise labeling pipeline that allows for large-scale processing efficiently. We provide comprehensive evaluation baselines for a range of tasks, underlining the significant challenges posed by FreeMan. Further evaluations of standard indoor/outdoor human sensing datasets reveal that FreeMan offers robust representation transferability in real and complex scenes. FreeMan is now publicly available at https://wangjiongw.github.io/freeman.
Abstract:Recently, digital humans for interpersonal interaction in virtual environments have gained significant attention. In this paper, we introduce a novel multi-dancer synthesis task called partner dancer generation, which involves synthesizing virtual human dancers capable of performing dance with users. The task aims to control the pose diversity between the lead dancer and the partner dancer. The core of this task is to ensure the controllable diversity of the generated partner dancer while maintaining temporal coordination with the lead dancer. This scenario varies from earlier research in generating dance motions driven by music, as our emphasis is on automatically designing partner dancer postures according to pre-defined diversity, the pose of lead dancer, as well as the accompanying tunes. To achieve this objective, we propose a three-stage framework called Dance-with-You (DanY). Initially, we employ a 3D Pose Collection stage to collect a wide range of basic dance poses as references for motion generation. Then, we introduce a hyper-parameter that coordinates the similarity between dancers by masking poses to prevent the generation of sequences that are over-diverse or consistent. To avoid the rigidity of movements, we design a Dance Pre-generated stage to pre-generate these masked poses instead of filling them with zeros. After that, a Dance Motion Transfer stage is adopted with leader sequences and music, in which a multi-conditional sampling formula is rewritten to transfer the pre-generated poses into a sequence with a partner style. In practice, to address the lack of multi-person datasets, we introduce AIST-M, a new dataset for partner dancer generation, which is publicly availiable. Comprehensive evaluations on our AIST-M dataset demonstrate that the proposed DanY can synthesize satisfactory partner dancer results with controllable diversity.
Abstract:This paper investigates the problem of the current HOI detection methods and introduces DiffHOI, a novel HOI detection scheme grounded on a pre-trained text-image diffusion model, which enhances the detector's performance via improved data diversity and HOI representation. We demonstrate that the internal representation space of a frozen text-to-image diffusion model is highly relevant to verb concepts and their corresponding context. Accordingly, we propose an adapter-style tuning method to extract the various semantic associated representation from a frozen diffusion model and CLIP model to enhance the human and object representations from the pre-trained detector, further reducing the ambiguity in interaction prediction. Moreover, to fill in the gaps of HOI datasets, we propose SynHOI, a class-balance, large-scale, and high-diversity synthetic dataset containing over 140K HOI images with fully triplet annotations. It is built using an automatic and scalable pipeline designed to scale up the generation of diverse and high-precision HOI-annotated data. SynHOI could effectively relieve the long-tail issue in existing datasets and facilitate learning interaction representations. Extensive experiments demonstrate that DiffHOI significantly outperforms the state-of-the-art in regular detection (i.e., 41.50 mAP) and zero-shot detection. Furthermore, SynHOI can improve the performance of model-agnostic and backbone-agnostic HOI detection, particularly exhibiting an outstanding 11.55% mAP improvement in rare classes.