Abstract:With the accelerated development of Industry 4.0, intelligent manufacturing systems increasingly require efficient task allocation and scheduling in multi-robot systems. However, existing methods rely on domain expertise and face challenges in adapting to dynamic production constraints. Additionally, enterprises have high privacy requirements for production scheduling data, which prevents the use of cloud-based large language models (LLMs) for solution development. To address these challenges, there is an urgent need for an automated modeling solution that meets data privacy requirements. This study proposes a knowledge-augmented mixed integer linear programming (MILP) automated formulation framework, integrating local LLMs with domain-specific knowledge bases to generate executable code from natural language descriptions automatically. The framework employs a knowledge-guided DeepSeek-R1-Distill-Qwen-32B model to extract complex spatiotemporal constraints (82% average accuracy) and leverages a supervised fine-tuned Qwen2.5-Coder-7B-Instruct model for efficient MILP code generation (90% average accuracy). Experimental results demonstrate that the framework successfully achieves automatic modeling in the aircraft skin manufacturing case while ensuring data privacy and computational efficiency. This research provides a low-barrier and highly reliable technical path for modeling in complex industrial scenarios.
Abstract:Recent Vision-based Large Language Models~(VisionLLMs) for autonomous driving have seen rapid advancements. However, such promotion is extremely dependent on large-scale high-quality annotated data, which is costly and labor-intensive. To address this issue, we propose unlocking the value of abundant yet unlabeled data to improve the language-driving model in a semi-supervised learning manner. Specifically, we first introduce a series of template-based prompts to extract scene information, generating questions that create pseudo-answers for the unlabeled data based on a model trained with limited labeled data. Next, we propose a Self-Consistency Refinement method to improve the quality of these pseudo-annotations, which are later used for further training. By utilizing a pre-trained VisionLLM (e.g., InternVL), we build a strong Language Driving Model (LDM) for driving scene question-answering, outperforming previous state-of-the-art methods. Extensive experiments on the DriveLM benchmark show that our approach performs well with just 5% labeled data, achieving competitive performance against models trained with full datasets. In particular, our LDM achieves 44.85% performance with limited labeled data, increasing to 54.27% when using unlabeled data, while models trained with full datasets reach 60.68% on the DriveLM benchmark.
Abstract:Future wireless communication networks are expected to be smarter and more aware of their surroundings, enabling a wide range of context-aware applications. Reconfigurable intelligent surfaces (RISs) are set to play a critical role in supporting various sensing tasks, such as target recognition. However, current methods typically use RIS configurations optimized once and applied over fixed sensing durations, limiting their ability to adapt to different targets and reducing sensing accuracy. To overcome these limitations, this study proposes an advanced wireless communication system that multiplexes downlink signals for environmental sensing and introduces an intelligent recognizer powered by deep learning techniques. Specifically, we design a novel neural network based on the long short-term memory architecture and the physical channel model. This network iteratively captures and fuses information from previous measurements, adaptively customizing RIS phases to gather the most relevant information for the recognition task at subsequent moments. These configurations are dynamically adjusted according to scene, task, target, and quantization priors. Furthermore, the recognizer includes a decision-making module that dynamically allocates different sensing durations, determining whether to continue or terminate the sensing process based on the collected measurements. This approach maximizes resource utilization efficiency. Simulation results demonstrate that the proposed method significantly outperforms state-of-the-art techniques while minimizing the impact on communication performance, even when sensing and communication occur simultaneously. Part of the source code for this paper can be accessed at https://github.com/kiwi1944/CRISense.
Abstract:Recent methods have made significant progress in synthesizing novel views with long video sequences. This paper proposes a highly scalable method for dynamic novel view synthesis with continual learning. We leverage the 3D Gaussians to represent the scene and a low-rank adaptation-based deformation model to capture the dynamic scene changes. Our method continuously reconstructs the dynamics with chunks of video frames, reduces the streaming bandwidth by $90\%$ while maintaining high rendering quality comparable to the off-line SOTA methods.
Abstract:Support vector machine (SVM) is a powerful machine learning algorithm to handle classification tasks. However, the classical SVM is developed for binary problems with the assumption of balanced datasets. Obviously, the multi-class imbalanced classification problems are more complex. In this paper, we propose an improved SVM via Differential Evolution (i-SVM-DE) method to deal with it. An improved SVM (i-SVM) model is proposed to handle the data imbalance by combining cost sensitive technique and separation margin modification in the constraints, which formalize a parameter optimization problem. By using one-versus-one (OVO) scheme, a multi-class problem is decomposed into a number of binary subproblems. A large optimization problem is formalized through concatenating the parameters in the binary subproblems. To find the optimal model effectively and learn the support vectors for each class simultaneously, an improved differential evolution (DE) algorithm is applied to solve this large optimization problem. Instead of the validation set, we propose the fitness functions to evaluate the learned model and obtain the optimal parameters in the search process of DE. A series of experiments are carried out to verify the benefits of our proposed method. The results indicate that i-SVM-DE is statistically superior by comparing with the other baseline methods.
Abstract:Real-time speech interaction, serving as a fundamental interface for human-machine collaboration, holds immense potential. However, current open-source models face limitations such as high costs in voice data collection, weakness in dynamic control, and limited intelligence. To address these challenges, this paper introduces Step-Audio, the first production-ready open-source solution. Key contributions include: 1) a 130B-parameter unified speech-text multi-modal model that achieves unified understanding and generation, with the Step-Audio-Chat version open-sourced; 2) a generative speech data engine that establishes an affordable voice cloning framework and produces the open-sourced lightweight Step-Audio-TTS-3B model through distillation; 3) an instruction-driven fine control system enabling dynamic adjustments across dialects, emotions, singing, and RAP; 4) an enhanced cognitive architecture augmented with tool calling and role-playing abilities to manage complex tasks effectively. Based on our new StepEval-Audio-360 evaluation benchmark, Step-Audio achieves state-of-the-art performance in human evaluations, especially in terms of instruction following. On open-source benchmarks like LLaMA Question, shows 9.3% average performance improvement, demonstrating our commitment to advancing the development of open-source multi-modal language technologies. Our code and models are available at https://github.com/stepfun-ai/Step-Audio.
Abstract:Integrated sensing and communication (ISAC) in millimeter wave is a key enabler for next-generation networks, which leverages large bandwidth and extensive antenna arrays, benefiting both communication and sensing functionalities. The associated high costs can be mitigated by adopting a hybrid beamforming structure. However, the well-studied monostatic ISAC systems face challenges related to full-duplex operation. To address this issue, this paper focuses on a three-dimensional bistatic configuration that requires only half-duplex base stations. To intuitively evaluate the error bound of bistatic sensing using orthogonal frequency division multiplexing waveforms, we propose a positioning scheme that combines angle-of-arrival and time-of-arrival estimation, deriving the closed-form expression of the position error bound (PEB). Using this PEB, we develop two hybrid beamforming algorithms for joint waveform design, aimed at maximizing achievable spectral efficiency (SE) while ensuring a predefined PEB threshold. The first algorithm leverages a Riemannian trust-region approach, achieving superior performance in terms of global optima and convergence speed compared to conventional gradient-based methods, but with higher complexity. In contrast, the second algorithm, which employs orthogonal matching pursuit, offers a more computationally efficient solution, delivering reasonable SE while maintaining the PEB constraint. Numerical results are provided to validate the effectiveness of the proposed designs.
Abstract:Maximum Mean Discrepancy (MMD) is widely used in a number of domain adaptation (DA) methods and shows its effectiveness in aligning data distributions across domains. However, in previous DA research, MMD-based DA methods focus mostly on distribution alignment, and ignore to optimize the decision boundary for classification-aware DA, thereby falling short in reducing the DA upper error bound. In this paper, we propose a strengthened MMD measurement, namely, Decision Boundary optimization-informed MMD (DB-MMD), which enables MMD to carefully take into account the decision boundaries, thereby simultaneously optimizing the distribution alignment and cross-domain classifier within a hybrid framework, and leading to a theoretical bound guided DA. We further seamlessly embed the proposed DB-MMD measurement into several popular DA methods, e.g., MEDA, DGA-DA, to demonstrate its effectiveness w.r.t different experimental settings. We carry out comprehensive experiments using 8 standard DA datasets. The experimental results show that the DB-MMD enforced DA methods improve their baseline models using plain vanilla MMD, with a margin that can be as high as 9.5.
Abstract:Recent advancements in large language models (LLMs) have spurred growing interest in automatic theorem proving using Lean4, where effective tree search methods are crucial for navigating proof search spaces. While the existing approaches primarily rely on value functions and Monte Carlo Tree Search (MCTS), the potential of simpler methods like Best-First Search (BFS) remains underexplored. This paper investigates whether BFS can achieve competitive performance in large-scale theorem proving tasks. We present \texttt{BFS-Prover}, a scalable expert iteration framework, featuring three key innovations. First, we implement strategic data filtering at each expert iteration round, excluding problems solvable via beam search node expansion to focus on harder cases. Second, we improve the sample efficiency of BFS through Direct Preference Optimization (DPO) applied to state-tactic pairs automatically annotated with compiler error feedback, refining the LLM's policy to prioritize productive expansions. Third, we employ length normalization in BFS to encourage exploration of deeper proof paths. \texttt{BFS-Prover} achieves a score of $71.31$ on the MiniF2F test set and therefore challenges the perceived necessity of complex tree search methods, demonstrating that BFS can achieve competitive performance when properly scaled.
Abstract:The development of explanations for scientific phenomena is essential in science assessment, but scoring student-written explanations remains challenging and resource-intensive. Large language models (LLMs) have shown promise in addressing this issue, particularly in alphabetic languages like English. However, their applicability to logographic languages is less explored. This study investigates the potential of fine-tuning ChatGPT, a leading LLM, to automatically score scientific explanations written in Chinese. Student responses to seven scientific explanation tasks were collected and automatically scored, with scoring accuracy examined in relation to reasoning complexity using the Kendall correlation. A qualitative analysis explored how linguistic features influenced scoring accuracy. The results show that domain-specific adaptation enables ChatGPT to score Chinese scientific explanations with accuracy. However, scoring accuracy correlates with reasoning complexity: a negative correlation for lower-level responses and a positive one for higher-level responses. The model overrates complex reasoning in low-level responses with intricate sentence structures and underrates high-level responses using concise causal reasoning. These correlations stem from linguistic features--simplicity and clarity enhance accuracy for lower-level responses, while comprehensiveness improves accuracy for higher-level ones. Simpler, shorter responses tend to score more accurately at lower levels, whereas longer, information-rich responses yield better accuracy at higher levels. These findings demonstrate the effectiveness of LLMs in automatic scoring within a Chinese context and emphasize the importance of linguistic features and reasoning complexity in fine-tuning scoring models for educational assessments.