Abstract:Communication-centric Integrated Sensing and Communication (ISAC) has been recognized as a promising methodology to implement wireless sensing functionality over existing network architectures, due to its cost-effectiveness and backward compatibility to legacy cellular systems. However, the inherent randomness of the communication signal may incur huge fluctuations in sensing capabilities, leading to unfavorable detection and estimation performance. To address this issue, we elaborate on random ISAC signal processing methods in this article, aiming at improving the sensing performance without unduly deteriorating the communication functionality. Specifically, we commence by discussing the fundamentals of sensing with random communication signals, including the performance metrics and optimal ranging waveforms. Building on these concepts, we then present a general framework for random ISAC signal transmission, followed by an in-depth exploration of time-domain pulse shaping, frequency-domain constellation shaping, and spatial-domain precoding methods. We provide a comprehensive overview of each of these topics, including models, results, and design guidelines. Finally, we conclude this article by identifying several promising research directions for random ISAC signal transmission.
Abstract:The integration of tool learning with Large Language Models (LLMs) has expanded their capabilities in handling complex tasks by leveraging external tools. However, existing benchmarks for tool learning inadequately address critical real-world personalized scenarios, particularly those requiring multi-hop reasoning and inductive knowledge adaptation in dynamic environments. To bridge this gap, we introduce FamilyTool, a novel benchmark grounded in a family-based knowledge graph (KG) that simulates personalized, multi-hop tool use scenarios. FamilyTool challenges LLMs with queries spanning 1 to 3 relational hops (e.g., inferring familial connections and preferences) and incorporates an inductive KG setting where models must adapt to unseen user preferences and relationships without re-training, a common limitation in prior approaches that compromises generalization. We further propose KGETool: a simple KG-augmented evaluation pipeline to systematically assess LLMs' tool use ability in these settings. Experiments reveal significant performance gaps in state-of-the-art LLMs, with accuracy dropping sharply as hop complexity increases and inductive scenarios exposing severe generalization deficits. These findings underscore the limitations of current LLMs in handling personalized, evolving real-world contexts and highlight the urgent need for advancements in tool-learning frameworks. FamilyTool serves as a critical resource for evaluating and advancing LLM agents' reasoning, adaptability, and scalability in complex, dynamic environments. Code and dataset are available at Github.
Abstract:The advancement of sensing technology has driven the widespread application of high-dimensional data. However, issues such as missing entries during acquisition and transmission negatively impact the accuracy of subsequent tasks. Tensor reconstruction aims to recover the underlying complete data from under-sampled observed data by exploring prior information in high-dimensional data. However, due to insufficient exploration, reconstruction methods still face challenges when sampling rate is extremely low. This work proposes a tensor reconstruction method integrating multiple priors to comprehensively exploit the inherent structure of the data. Specifically, the method combines learnable tensor decomposition to enforce low-rank constraints of the reconstructed data, a pre-trained convolutional neural network for smoothing and denoising, and block-matching and 3D filtering regularization to enhance the non-local similarity in the reconstructed data. An alternating direction method of the multipliers algorithm is designed to decompose the resulting optimization problem into three subproblems for efficient resolution. Extensive experiments on color images, hyperspectral images, and grayscale videos datasets demonstrate the superiority of our method in extreme cases as compared with state-of-the-art methods.
Abstract:Dynamic hedging strategies are essential for effective risk management in derivatives markets, where volatility and market sentiment can greatly impact performance. This paper introduces a novel framework that leverages large language models (LLMs) for sentiment analysis and news analytics to inform hedging decisions. By analyzing textual data from diverse sources like news articles, social media, and financial reports, our approach captures critical sentiment indicators that reflect current market conditions. The framework allows for real-time adjustments to hedging strategies, adapting positions based on continuous sentiment signals. Backtesting results on historical derivatives data reveal that our dynamic hedging strategies achieve superior risk-adjusted returns compared to conventional static approaches. The incorporation of LLM-driven sentiment analysis into hedging practices presents a significant advancement in decision-making processes within derivatives trading. This research showcases how sentiment-informed dynamic hedging can enhance portfolio management and effectively mitigate associated risks.
Abstract:Large language models (LLMs) have emerged as powerful tools in the field of finance, particularly for risk management across different asset classes. In this work, we introduce a Cross-Asset Risk Management framework that utilizes LLMs to facilitate real-time monitoring of equity, fixed income, and currency markets. This innovative approach enables dynamic risk assessment by aggregating diverse data sources, ultimately enhancing decision-making processes. Our model effectively synthesizes and analyzes market signals to identify potential risks and opportunities while providing a holistic view of asset classes. By employing advanced analytics, we leverage LLMs to interpret financial texts, news articles, and market reports, ensuring that risks are contextualized within broader market narratives. Extensive backtesting and real-time simulations validate the framework, showing increased accuracy in predicting market shifts compared to conventional methods. The focus on real-time data integration enhances responsiveness, allowing financial institutions to manage risks adeptly under varying market conditions and promoting financial stability through the advanced application of LLMs in risk analysis.
Abstract:Specialized reasoning language models (RLMs) have demonstrated that scaling test-time computation through detailed reasoning traces significantly enhances performance. Although these traces effectively facilitate knowledge distillation into smaller, instruction-tuned models, the precise nature of transferred reasoning remains unclear. In this study, we investigate to what extent distilled models internalize replicated stylistic patterns during reasoning. To this end, we systematically analyze reasoning traces, identifying structural and lexical patterns that characterize successful reasoning. We then introduce two new datasets -- a dataset of emergent reasoning traces and a synthetic dataset explicitly constructed to replicate these stylistic patterns -- to precisely examine their influence on distilled models' reasoning capabilities. We find that models trained on the synthetic traces achieve comparable performance, indicating that distilled reasoning abilities rely significantly on surface-level patterns. Surprisingly, we observe an increase in performance even when the synthetic traces are altered to lead to the wrong answer. Our findings highlight how stylistic patterns can be leveraged to efficiently enhance LM reasoning across diverse model families.
Abstract:With the accelerated development of Industry 4.0, intelligent manufacturing systems increasingly require efficient task allocation and scheduling in multi-robot systems. However, existing methods rely on domain expertise and face challenges in adapting to dynamic production constraints. Additionally, enterprises have high privacy requirements for production scheduling data, which prevents the use of cloud-based large language models (LLMs) for solution development. To address these challenges, there is an urgent need for an automated modeling solution that meets data privacy requirements. This study proposes a knowledge-augmented mixed integer linear programming (MILP) automated formulation framework, integrating local LLMs with domain-specific knowledge bases to generate executable code from natural language descriptions automatically. The framework employs a knowledge-guided DeepSeek-R1-Distill-Qwen-32B model to extract complex spatiotemporal constraints (82% average accuracy) and leverages a supervised fine-tuned Qwen2.5-Coder-7B-Instruct model for efficient MILP code generation (90% average accuracy). Experimental results demonstrate that the framework successfully achieves automatic modeling in the aircraft skin manufacturing case while ensuring data privacy and computational efficiency. This research provides a low-barrier and highly reliable technical path for modeling in complex industrial scenarios.
Abstract:Recent Vision-based Large Language Models~(VisionLLMs) for autonomous driving have seen rapid advancements. However, such promotion is extremely dependent on large-scale high-quality annotated data, which is costly and labor-intensive. To address this issue, we propose unlocking the value of abundant yet unlabeled data to improve the language-driving model in a semi-supervised learning manner. Specifically, we first introduce a series of template-based prompts to extract scene information, generating questions that create pseudo-answers for the unlabeled data based on a model trained with limited labeled data. Next, we propose a Self-Consistency Refinement method to improve the quality of these pseudo-annotations, which are later used for further training. By utilizing a pre-trained VisionLLM (e.g., InternVL), we build a strong Language Driving Model (LDM) for driving scene question-answering, outperforming previous state-of-the-art methods. Extensive experiments on the DriveLM benchmark show that our approach performs well with just 5% labeled data, achieving competitive performance against models trained with full datasets. In particular, our LDM achieves 44.85% performance with limited labeled data, increasing to 54.27% when using unlabeled data, while models trained with full datasets reach 60.68% on the DriveLM benchmark.
Abstract:Future wireless communication networks are expected to be smarter and more aware of their surroundings, enabling a wide range of context-aware applications. Reconfigurable intelligent surfaces (RISs) are set to play a critical role in supporting various sensing tasks, such as target recognition. However, current methods typically use RIS configurations optimized once and applied over fixed sensing durations, limiting their ability to adapt to different targets and reducing sensing accuracy. To overcome these limitations, this study proposes an advanced wireless communication system that multiplexes downlink signals for environmental sensing and introduces an intelligent recognizer powered by deep learning techniques. Specifically, we design a novel neural network based on the long short-term memory architecture and the physical channel model. This network iteratively captures and fuses information from previous measurements, adaptively customizing RIS phases to gather the most relevant information for the recognition task at subsequent moments. These configurations are dynamically adjusted according to scene, task, target, and quantization priors. Furthermore, the recognizer includes a decision-making module that dynamically allocates different sensing durations, determining whether to continue or terminate the sensing process based on the collected measurements. This approach maximizes resource utilization efficiency. Simulation results demonstrate that the proposed method significantly outperforms state-of-the-art techniques while minimizing the impact on communication performance, even when sensing and communication occur simultaneously. Part of the source code for this paper can be accessed at https://github.com/kiwi1944/CRISense.
Abstract:Recent methods have made significant progress in synthesizing novel views with long video sequences. This paper proposes a highly scalable method for dynamic novel view synthesis with continual learning. We leverage the 3D Gaussians to represent the scene and a low-rank adaptation-based deformation model to capture the dynamic scene changes. Our method continuously reconstructs the dynamics with chunks of video frames, reduces the streaming bandwidth by $90\%$ while maintaining high rendering quality comparable to the off-line SOTA methods.