Abstract:Aligning powerful AI models on tasks that surpass human evaluation capabilities is the central problem of \textbf{superalignment}. To address this problem, weak-to-strong generalization aims to elicit the capabilities of strong models through weak supervisors and ensure that the behavior of strong models aligns with the intentions of weak supervisors without unsafe behaviors such as deception. Although weak-to-strong generalization exhibiting certain generalization capabilities, strong models exhibit significant overfitting in weak-to-strong generalization: Due to the strong fit ability of strong models, erroneous labels from weak supervisors may lead to overfitting in strong models. In addition, simply filtering out incorrect labels may lead to a degeneration in question quality, resulting in a weak generalization ability of strong models on hard questions. To mitigate overfitting in weak-to-strong generalization, we propose a two-stage framework that simultaneously improves the quality of supervision signals and the quality of input questions. Experimental results in three series of large language models and two mathematical benchmarks demonstrate that our framework significantly improves PGR compared to naive weak-to-strong generalization, even achieving up to 100\% PGR on some models.
Abstract:A lot of natural language processing problems need to encode the text sequence as a fix-length vector, which usually involves aggregation process of combining the representations of all the words, such as pooling or self-attention. However, these widely used aggregation approaches did not take higher-order relationship among the words into consideration. Hence we propose a new way of obtaining aggregation weights, called eigen-centrality self-attention. More specifically, we build a fully-connected graph for all the words in a sentence, then compute the eigen-centrality as the attention score of each word. The explicit modeling of relationships as a graph is able to capture some higher-order dependency among words, which helps us achieve better results in 5 text classification tasks and one SNLI task than baseline models such as pooling, self-attention and dynamic routing. Besides, in order to compute the dominant eigenvector of the graph, we adopt power method algorithm to get the eigen-centrality measure. Moreover, we also derive an iterative approach to get the gradient for the power method process to reduce both memory consumption and computation requirement.}
Abstract:As a crucial step in extractive document summarization, learning cross-sentence relations has been explored by a plethora of approaches. An intuitive way is to put them in the graph-based neural network, which has a more complex structure for capturing inter-sentence relationships. In this paper, we present a heterogeneous graph-based neural network for extractive summarization (HeterSumGraph), which contains semantic nodes of different granularity levels apart from sentences. These additional nodes act as the intermediary between sentences and enrich the cross-sentence relations. Besides, our graph structure is flexible in natural extension from a single-document setting to multi-document via introducing document nodes. To our knowledge, we are the first one to introduce different types of nodes into graph-based neural networks for extractive document summarization and perform a comprehensive qualitative analysis to investigate their benefits. The code will be released on Github