Abstract:Aligning language models (LMs) with human preferences has become a key area of research, enabling these models to meet diverse user needs better. Inspired by weak-to-strong generalization, where a strong LM fine-tuned on labels generated by a weaker model can consistently outperform its weak supervisor, we extend this idea to model alignment. In this work, we observe that the alignment behavior in weaker models can be effectively transferred to stronger models and even exhibit an amplification effect. Based on this insight, we propose a method called Weak-to-Strong Preference Optimization (WSPO), which achieves strong model alignment by learning the distribution differences before and after the alignment of the weak model. Experiments demonstrate that WSPO delivers outstanding performance, improving the win rate of Qwen2-7B-Instruct on Arena-Hard from 39.70 to 49.60, achieving a remarkable 47.04 length-controlled win rate on AlpacaEval 2, and scoring 7.33 on MT-bench. Our results suggest that using the weak model to elicit a strong model with a high alignment ability is feasible.
Abstract:While various vertical domain large language models (LLMs) have been developed, the challenge of automatically evaluating their performance across different domains remains significant in addressing real-world user needs. Current benchmark-based evaluation methods exhibit rigid, purposeless interactions and rely on pre-collected static datasets that are costly to build, inflexible across domains, and misaligned with practical user needs. To address this, we revisit the evaluation components and introduce two definitions: **Benchmark+**, which extends traditional QA benchmarks into a more flexible ``strategy-criterion'' format; and **Assessment+**, which enhances the interaction process for greater exploration and enables both quantitative metrics and qualitative insights that capture nuanced target LLM behaviors from richer multi-turn interactions. We propose an agent-based evaluation framework called *TestAgent*, which implements these two concepts through retrieval augmented generation and reinforcement learning. Experiments on tasks ranging from building vertical domain evaluation from scratch to activating existing benchmarks demonstrate the effectiveness of *TestAgent* across various scenarios. We believe this work offers an interesting perspective on automatic evaluation for LLMs.
Abstract:The rise of large language models (LLMs) has significantly influenced the quality of information in decision-making systems, leading to the prevalence of AI-generated content and challenges in detecting misinformation and managing conflicting information, or "inter-evidence conflicts." This study introduces a method for generating diverse, validated evidence conflicts to simulate real-world misinformation scenarios. We evaluate conflict detection methods, including Natural Language Inference (NLI) models, factual consistency (FC) models, and LLMs, on these conflicts (RQ1) and analyze LLMs' conflict resolution behaviors (RQ2). Our key findings include: (1) NLI and LLM models exhibit high precision in detecting answer conflicts, though weaker models suffer from low recall; (2) FC models struggle with lexically similar answer conflicts, while NLI and LLM models handle these better; and (3) stronger models like GPT-4 show robust performance, especially with nuanced conflicts. For conflict resolution, LLMs often favor one piece of conflicting evidence without justification and rely on internal knowledge if they have prior beliefs.
Abstract:Large language model pre-training has traditionally relied on human experts to craft heuristics for improving the corpora quality, resulting in numerous rules developed to date. However, these rules lack the flexibility to address the unique characteristics of individual example effectively. Meanwhile, applying tailored rules to every example is impractical for human experts. In this paper, we demonstrate that even small language models, with as few as 0.3B parameters, can exhibit substantial data refining capabilities comparable to those of human experts. We introduce Programming Every Example (ProX), a novel framework that treats data refinement as a programming task, enabling models to refine corpora by generating and executing fine-grained operations, such as string normalization, for each individual example at scale. Experimental results show that models pre-trained on ProX-curated data outperform either original data or data filtered by other selection methods by more than 2% across various downstream benchmarks. Its effectiveness spans various model sizes and pre-training corpora, including C4, RedPajama-V2, and FineWeb. Furthermore, ProX exhibits significant potential in domain-specific continual pre-training: without domain specific design, models trained on OpenWebMath refined by ProX outperform human-crafted rule-based methods, improving average accuracy by 7.6% over Mistral-7B, with 14.6% for Llama-2-7B and 20.3% for CodeLlama-7B, all within 10B tokens to be comparable to models like Llemma-7B trained on 200B tokens. Further analysis highlights that ProX significantly saves training FLOPs, offering a promising path for efficient LLM pre-training.We are open-sourcing ProX with >100B corpus, models, and sharing all training and implementation details for reproducible research and future innovation. Code: https://github.com/GAIR-NLP/ProX
Abstract:Despite Retrieval-Augmented Generation (RAG) has shown promising capability in leveraging external knowledge, a comprehensive evaluation of RAG systems is still challenging due to the modular nature of RAG, evaluation of long-form responses and reliability of measurements. In this paper, we propose a fine-grained evaluation framework, RAGChecker, that incorporates a suite of diagnostic metrics for both the retrieval and generation modules. Meta evaluation verifies that RAGChecker has significantly better correlations with human judgments than other evaluation metrics. Using RAGChecker, we evaluate 8 RAG systems and conduct an in-depth analysis of their performance, revealing insightful patterns and trade-offs in the design choices of RAG architectures. The metrics of RAGChecker can guide researchers and practitioners in developing more effective RAG systems.
Abstract:The rapid growth of scientific literature imposes significant challenges for researchers endeavoring to stay updated with the latest advancements in their fields and delve into new areas. We introduce OpenResearcher, an innovative platform that leverages Artificial Intelligence (AI) techniques to accelerate the research process by answering diverse questions from researchers. OpenResearcher is built based on Retrieval-Augmented Generation (RAG) to integrate Large Language Models (LLMs) with up-to-date, domain-specific knowledge. Moreover, we develop various tools for OpenResearcher to understand researchers' queries, search from the scientific literature, filter retrieved information, provide accurate and comprehensive answers, and self-refine these answers. OpenResearcher can flexibly use these tools to balance efficiency and effectiveness. As a result, OpenResearcher enables researchers to save time and increase their potential to discover new insights and drive scientific breakthroughs. Demo, video, and code are available at: https://github.com/GAIR-NLP/OpenResearcher.
Abstract:The 1st Workshop on Data Contamination (CONDA 2024) focuses on all relevant aspects of data contamination in natural language processing, where data contamination is understood as situations where evaluation data is included in pre-training corpora used to train large scale models, compromising evaluation results. The workshop fostered a shared task to collect evidence on data contamination in current available datasets and models. The goal of the shared task and associated database is to assist the community in understanding the extent of the problem and to assist researchers in avoiding reporting evaluation results on known contaminated resources. The shared task provides a structured, centralized public database for the collection of contamination evidence, open to contributions from the community via GitHub pool requests. This first compilation paper is based on 566 reported entries over 91 contaminated sources from a total of 23 contributors. The details of the individual contamination events are available in the platform. The platform continues to be online, open to contributions from the community.
Abstract:Recently, vision-language instruct-tuning models have made significant progress due to their more comprehensive understanding of the world. In this work, we discovered that large-scale 3D parallel training on those models leads to an imbalanced computation load across different devices. The vision and language parts are inherently heterogeneous: their data distribution and model architecture differ significantly, which affects distributed training efficiency. We rebalanced the computational loads from data, model, and memory perspectives to address this issue, achieving more balanced computation across devices. These three components are not independent but are closely connected, forming an omniverse balanced training framework. Specifically, for the data, we grouped instances into new balanced mini-batches within and across devices. For the model, we employed a search-based method to achieve a more balanced partitioning. For memory optimization, we adaptively adjusted the re-computation strategy for each partition to utilize the available memory fully. We conducted extensive experiments to validate the effectiveness of our method. Compared with the open-source training code of InternVL-Chat, we significantly reduced GPU days, achieving about 1.8x speed-up. Our method's efficacy and generalizability were further demonstrated across various models and datasets. Codes will be released at https://github.com/ModelTC/OmniBal.
Abstract:The deployment of Large Language Models (LLMs) in content generation raises significant safety concerns, particularly regarding the transparency and interpretability of content evaluations. Current methods, primarily focused on binary safety classifications, lack mechanisms for detailed critique, limiting their utility for model improvement and user trust. To address these limitations, we introduce SAFETY-J, a bilingual generative safety evaluator for English and Chinese with critique-based judgment. SAFETY-J utilizes a robust training dataset that includes diverse dialogues and augmented query-response pairs to assess safety across various scenarios comprehensively. We establish an automated meta-evaluation benchmark that objectively assesses the quality of critiques with minimal human intervention, facilitating scalable and continuous improvement. Additionally, SAFETY-J employs an iterative preference learning technique to dynamically refine safety assessments based on meta-evaluations and critiques. Our evaluations demonstrate that SAFETY-J provides more nuanced and accurate safety evaluations, thereby enhancing both critique quality and predictive reliability in complex content scenarios. To facilitate further research and application, we open-source SAFETY-J's training protocols, datasets, and code at \url{https://github.com/GAIR-NLP/Safety-J}.
Abstract:Direct Preference Optimization (DPO) has become a widely used training method for the instruction fine-tuning of large language models (LLMs). In this work, we explore an under-investigated aspect of DPO - its dependency on the reference model or policy. Such reference policies, typically instantiated as the model to be further fine-tuned, are important since they can impose an upper limit on DPO's effectiveness. Therefore, we address three related research questions in this work. First, we explore the optimal strength of the KL-divergence constraint in DPO, which penalizes deviations from the reference policy, and find that DPO is sensitive to this strength. Next, we examine the necessity of reference policies for instruction fine-tuning by providing both theoretical and empirical comparisons between DPO and related learning objectives, demonstrating DPO's superiority. Additionally, we investigate whether DPO benefits from stronger reference policies, finding that a stronger reference policy can lead to improved performance, but only when it is similar to the model being fine-tuned. Our findings highlight the confounding role of reference policies in DPO and offer insights for best practices, while also identifying open research questions for future studies.