Abstract:When large language models (LLMs) exceed human-level capabilities, it becomes increasingly challenging to provide full-scale and accurate supervisions for these models. Weak-to-strong learning, which leverages a less capable model to unlock the latent abilities of a stronger model, proves valuable in this context. Yet, the efficacy of this approach for complex reasoning tasks is still untested. Furthermore, tackling reasoning tasks under the weak-to-strong setting currently lacks efficient methods to avoid blindly imitating the weak supervisor including its errors. In this paper, we introduce a progressive learning framework that enables the strong model to autonomously refine its training data, without requiring input from either a more advanced model or human-annotated data. This framework begins with supervised fine-tuning on a selective small but high-quality dataset, followed by preference optimization on contrastive samples identified by the strong model itself. Extensive experiments on the GSM8K and MATH datasets demonstrate that our method significantly enhances the reasoning capabilities of Llama2-70b using three separate weak models. This method is further validated in a forward-looking experimental setup, where Llama3-8b-instruct effectively supervises Llama3-70b on the highly challenging OlympicArena dataset. This work paves the way for a more scalable and sophisticated strategy to enhance AI reasoning powers. All relevant code and resources are available in \url{https://github.com/GAIR-NLP/weak-to-strong-reasoning}.
Abstract:Previous open-source large multimodal models (LMMs) have faced several limitations: (1) they often lack native integration, requiring adapters to align visual representations with pre-trained large language models (LLMs); (2) many are restricted to single-modal generation; (3) while some support multimodal generation, they rely on separate diffusion models for visual modeling and generation. To mitigate these limitations, we present Anole, an open, autoregressive, native large multimodal model for interleaved image-text generation. We build Anole from Meta AI's Chameleon, adopting an innovative fine-tuning strategy that is both data-efficient and parameter-efficient. Anole demonstrates high-quality, coherent multimodal generation capabilities. We have open-sourced our model, training framework, and instruction tuning data.
Abstract:Understanding documents with rich layouts and multi-modal components is a long-standing and practical task. Recent Large Vision-Language Models (LVLMs) have made remarkable strides in various tasks, particularly in single-page document understanding (DU). However, their abilities on long-context DU remain an open problem. This work presents MMLongBench-Doc, a long-context, multi-modal benchmark comprising 1,062 expert-annotated questions. Distinct from previous datasets, it is constructed upon 130 lengthy PDF-formatted documents with an average of 49.4 pages and 20,971 textual tokens. Towards comprehensive evaluation, answers to these questions rely on pieces of evidence from (1) different sources (text, image, chart, table, and layout structure) and (2) various locations (i.e. page number). Moreover, 33.2% of the questions are cross-page questions requiring evidence across multiple pages. 22.8% of the questions are designed to be unanswerable for detecting potential hallucinations. Experiments on 14 LVLMs demonstrate that long-context DU greatly challenges current models. Notably, the best-performing model, GPT-4o, achieves an F1 score of only 42.7%, while the second-best, GPT-4V, scores 31.4%. Furthermore, 12 LVLMs (all except GPT-4o and GPT-4V) even present worse performance than their LLM counterparts which are fed with lossy-parsed OCR documents. These results validate the necessity of future research toward more capable long-context LVLMs. Project Page: https://mayubo2333.github.io/MMLongBench-Doc
Abstract:The evolution of Artificial Intelligence (AI) has been significantly accelerated by advancements in Large Language Models (LLMs) and Large Multimodal Models (LMMs), gradually showcasing potential cognitive reasoning abilities in problem-solving and scientific discovery (i.e., AI4Science) once exclusive to human intellect. To comprehensively evaluate current models' performance in cognitive reasoning abilities, we introduce OlympicArena, which includes 11,163 bilingual problems across both text-only and interleaved text-image modalities. These challenges encompass a wide range of disciplines spanning seven fields and 62 international Olympic competitions, rigorously examined for data leakage. We argue that the challenges in Olympic competition problems are ideal for evaluating AI's cognitive reasoning due to their complexity and interdisciplinary nature, which are essential for tackling complex scientific challenges and facilitating discoveries. Beyond evaluating performance across various disciplines using answer-only criteria, we conduct detailed experiments and analyses from multiple perspectives. We delve into the models' cognitive reasoning abilities, their performance across different modalities, and their outcomes in process-level evaluations, which are vital for tasks requiring complex reasoning with lengthy solutions. Our extensive evaluations reveal that even advanced models like GPT-4o only achieve a 39.97% overall accuracy, illustrating current AI limitations in complex reasoning and multimodal integration. Through the OlympicArena, we aim to advance AI towards superintelligence, equipping it to address more complex challenges in science and beyond. We also provide a comprehensive set of resources to support AI research, including a benchmark dataset, an open-source annotation platform, a detailed evaluation tool, and a leaderboard with automatic submission features.
Abstract:A story premise succinctly defines a story's main idea, foundation, and trajectory. It serves as the initial trigger in automatic story generation. Existing sources of story premises are limited by a lack of diversity, uneven quality, and high costs that make them difficult to scale. In response, we introduce Modular Story Premise Synthesis (MoPS) which breaks down story premises into modules like background and persona for automated design and generation. MoPS consists of three phases: (1) Precollect a consistent set of candidates for each module to form a nested dictionary. (2) Extract a key path from the nested dictionary as the premise design. (3) Instruct an LLM to integrate the design into a coherent premise sentence. Thorough evaluations demonstrate that our synthesized premises excel in diversity, fascination, completeness, and originality compared to those induced from large language models and captured from public story datasets. Similarly, the extended novels and scripts generated from our premises also exhibit higher quality. In supplementary materials, we provide the MoPS code suite, along with 7.6k generated premises and 1k extended stories. Code: https://github.com/GAIR-NLP/MoPS.
Abstract:Motivated by that DETR-based approaches have established new records on COCO detection and segmentation benchmarks, many recent endeavors show increasing interest in how to further improve DETR-based approaches by pre-training the Transformer in a self-supervised manner while keeping the backbone frozen. Some studies already claimed significant improvements in accuracy. In this paper, we take a closer look at their experimental methodology and check if their approaches are still effective on the very recent state-of-the-art such as $\mathcal{H}$-Deformable-DETR. We conduct thorough experiments on COCO object detection tasks to study the influence of the choice of pre-training datasets, localization, and classification target generation schemes. Unfortunately, we find the previous representative self-supervised approach such as DETReg, fails to boost the performance of the strong DETR-based approaches on full data regimes. We further analyze the reasons and find that simply combining a more accurate box predictor and Objects$365$ benchmark can significantly improve the results in follow-up experiments. We demonstrate the effectiveness of our approach by achieving strong object detection results of AP=$59.3\%$ on COCO val set, which surpasses $\mathcal{H}$-Deformable-DETR + Swin-L by +$1.4\%$. Last, we generate a series of synthetic pre-training datasets by combining the very recent image-to-text captioning models (LLaVA) and text-to-image generative models (SDXL). Notably, pre-training on these synthetic datasets leads to notable improvements in object detection performance. Looking ahead, we anticipate substantial advantages through the future expansion of the synthetic pre-training dataset.
Abstract:Training a robust policy is critical for policy deployment in real-world systems or dealing with unknown dynamics mismatch in different dynamic systems. Domain Randomization~(DR) is a simple and elegant approach that trains a conservative policy to counter different dynamic systems without expert knowledge about the target system parameters. However, existing works reveal that the policy trained through DR tends to be over-conservative and performs poorly in target domains. Our key insight is that dynamic systems with different parameters provide different levels of difficulty for the policy, and the difficulty of behaving well in a system is constantly changing due to the evolution of the policy. If we can actively sample the systems with proper difficulty for the policy on the fly, it will stabilize the training process and prevent the policy from becoming over-conservative or over-optimistic. To operationalize this idea, we introduce Active Dynamics Preference~(ADP), which quantifies the informativeness and density of sampled system parameters. ADP actively selects system parameters with high informativeness and low density. We validate our approach in four robotic locomotion tasks with various discrepancies between the training and testing environments. Extensive results demonstrate that our approach has superior robustness for system inconsistency compared to several baselines.
Abstract:While Reinforcement Learning can achieve impressive results for complex tasks, the learned policies are generally prone to fail in downstream tasks with even minor model mismatch or unexpected perturbations. Recent works have demonstrated that a policy population with diverse behavior characteristics can generalize to downstream environments with various discrepancies. However, such policies might result in catastrophic damage during the deployment in practical scenarios like real-world systems due to the unrestricted behaviors of trained policies. Furthermore, training diverse policies without regulation of the behavior can result in inadequate feasible policies for extrapolating to a wide range of test conditions with dynamics shifts. In this work, we aim to train diverse policies under the regularization of the behavior patterns. We motivate our paradigm by observing the inverse dynamics in the environment with partial state information and propose Diversity in Regulation(DiR) training diverse policies with regulated behaviors to discover desired patterns that benefit the generalization. Considerable empirical results on various variations of different environments indicate that our method attains improvements over other diversity-driven counterparts.
Abstract:A key challenge in Machine Learning is class imbalance, where the sample size of some classes (majority classes) are much higher than that of the other classes (minority classes). If we were to train a classifier directly on imbalanced data, it is more likely for the classifier to predict a new sample as one of the majority classes. In the extreme case, the classifier could completely ignore the minority classes. This could have serious sociological implications in healthcare, as the minority classes are usually the disease classes (e.g., death or positive clinical test result). In this paper, we introduce a software that uses Generative Adversarial Networks to oversample the minority classes so as to improve downstream classification. To the best of our knowledge, this is the first tool that allows multi-class classification (where the target can have an arbitrary number of classes). The code of the tool is publicly available in our github repository (https://github.com/yuxiaohuang/research/tree/master/gwu/working/cigan/code).
Abstract:Evolutionary Algorithms (EAs) and Deep Reinforcement Learning (DRL) have recently been combined to integrate the advantages of the two solutions for better policy learning. However, in existing hybrid methods, EA is used to directly train the policy network, which will lead to sample inefficiency and unpredictable impact on the policy performance. To better integrate these two approaches and avoid the drawbacks caused by the introduction of EA, we devote ourselves to devising a more efficient and reasonable method of combining EA and DRL. In this paper, we propose Evolutionary Action Selection-Twin Delayed Deep Deterministic Policy Gradient (EAS-TD3), a novel combination of EA and DRL. In EAS, we focus on optimizing the action chosen by the policy network and attempt to obtain high-quality actions to guide policy learning through an evolutionary algorithm. We conduct several experiments on challenging continuous control tasks. The result shows that EAS-TD3 shows superior performance over other state-of-art methods.