Abstract:Visual object tracking aims to locate a targeted object in a video sequence based on an initial bounding box. Recently, Vision-Language~(VL) trackers have proposed to utilize additional natural language descriptions to enhance versatility in various applications. However, VL trackers are still inferior to State-of-The-Art (SoTA) visual trackers in terms of tracking performance. We found that this inferiority primarily results from their heavy reliance on manual textual annotations, which include the frequent provision of ambiguous language descriptions. In this paper, we propose ChatTracker to leverage the wealth of world knowledge in the Multimodal Large Language Model (MLLM) to generate high-quality language descriptions and enhance tracking performance. To this end, we propose a novel reflection-based prompt optimization module to iteratively refine the ambiguous and inaccurate descriptions of the target with tracking feedback. To further utilize semantic information produced by MLLM, a simple yet effective VL tracking framework is proposed and can be easily integrated as a plug-and-play module to boost the performance of both VL and visual trackers. Experimental results show that our proposed ChatTracker achieves a performance comparable to existing methods.
Abstract:Recently, Multimodal Large Language Models (MLLMs) have sparked great research interests owing to their exceptional content-reasoning and instruction-following capabilities. To effectively instruct an MLLM, in addition to conventional language expressions, the practice of referring to objects by painting with brushes on images has emerged as a prevalent tool (referred to as "referring visual prompts") due to its efficacy in aligning the user's intention with specific image regions. To accommodate the most common referring visual prompts, namely points, boxes, and masks, existing approaches initially utilize specialized feature encoding modules to capture the semantics of the highlighted areas indicated by these prompts. Subsequently, these encoded region features are adapted to MLLMs through fine-tuning on a meticulously curated multimodal instruction dataset. However, such designs suffer from redundancy in architecture. Moreover, they face challenges in effectively generalizing when encountering a diverse range of arbitrary referring visual prompts in real-life scenarios. To address the above issues, we propose EAGLE, a novel MLLM that empowers comprehension of arbitrary referring visual prompts with less training efforts than existing approaches. Specifically, our EAGLE maintains the innate format of the referring visual prompts as colored patches rendered on the given image for conducting the instruction tuning. Our approach embeds referring visual prompts as spatial concepts conveying specific spatial areas comprehensible to the MLLM, with the semantic comprehension of these regions originating from the MLLM itself. Besides, we also propose a Geometry-Agnostic Learning paradigm (GAL) to further disentangle the MLLM's region-level comprehension with the specific formats of referring visual prompts. Extensive experiments are conducted to prove the effectiveness of our proposed method.
Abstract:Recently, Multimodal Large Language Models (MLLMs) have made significant progress in the video comprehension field. Despite remarkable content reasoning and instruction following capabilities they demonstrated, the hallucination problem of these VideoLLMs is less explored compared with its counterpart in the image domain. To mitigate this gap, we first propose EventHallusion, a novel benchmark that focuses on assessing the VideoLMMs' hallucination phenomenon on video event comprehension. Based on the observation that existing VideoLLMs are entangled with the priors stemming from their foundation models, our EventHallusion is curated by meticulously collecting videos and annotating questions to intentionally mislead the VideoLLMs into interpreting events based on these priors rather than accurately understanding the video content. On the other hand, we also propose a simple yet effective method, called Temporal Contrastive Decoding (TCD), to tackle the hallucination problems of VideoLLMs. The proposed TCD suppresses the model's preference toward their priors by comparing the original video with a constructed counterpart, whose temporal cues are disrupted, during the autoregressive decoding stage. Through comprehensive evaluation of eight open-source and two closed-source VideoLLMs on the proposed EventHallusion benchmark, we find that the open-source models suffer significantly from hallucination problems, whereas the closed-source models perform markedly better. By further equipping open-sourced VideoLLMs with the proposed TCD approach, evident performance improvements are achieved across most metrics in the EventHallusion benchmark. Our codes and benchmark data are available at https://github.com/Stevetich/EventHallusion.
Abstract:Data-driven approaches for autonomous driving (AD) have been widely adopted in the past decade but are confronted with dataset bias and uninterpretability. Inspired by the knowledge-driven nature of human driving, recent approaches explore the potential of large language models (LLMs) to improve understanding and decision-making in traffic scenarios. They find that the pretrain-finetune paradigm of LLMs on downstream data with the Chain-of-Thought (CoT) reasoning process can enhance explainability and scene understanding. However, such a popular strategy proves to suffer from the notorious problems of misalignment between the crafted CoTs against the consequent decision-making, which remains untouched by previous LLM-based AD methods. To address this problem, we motivate an end-to-end decision-making model based on multimodality-augmented LLM, which simultaneously executes CoT reasoning and carries out planning results. Furthermore, we propose a reasoning-decision alignment constraint between the paired CoTs and planning results, imposing the correspondence between reasoning and decision-making. Moreover, we redesign the CoTs to enable the model to comprehend complex scenarios and enhance decision-making performance. We dub our proposed large language planners with reasoning-decision alignment as RDA-Driver. Experimental evaluations on the nuScenes and DriveLM-nuScenes benchmarks demonstrate the effectiveness of our RDA-Driver in enhancing the performance of end-to-end AD systems. Specifically, our RDA-Driver achieves state-of-the-art planning performance on the nuScenes dataset with 0.80 L2 error and 0.32 collision rate, and also achieves leading results on challenging DriveLM-nuScenes benchmarks with 0.82 L2 error and 0.38 collision rate.
Abstract:Multimodal Large Language Models (MLLM) have made significant progress in the field of document analysis. Despite this, existing benchmarks typically focus only on extracting text and simple layout information, neglecting the complex interactions between elements in structured documents such as mind maps and flowcharts. To address this issue, we introduce the new benchmark named MindBench, which not only includes meticulously constructed bilingual authentic or synthetic images, detailed annotations, evaluation metrics and baseline models, but also specifically designs five types of structured understanding and parsing tasks. These tasks include full parsing, partial parsing, position-related parsing, structured Visual Question Answering (VQA), and position-related VQA, covering key areas such as text recognition, spatial awareness, relationship discernment, and structured parsing. Extensive experimental results demonstrate the substantial potential and significant room for improvement in current models' ability to handle structured document information. We anticipate that the launch of MindBench will significantly advance research and application development in structured document analysis technology. MindBench is available at: https://miasanlei.github.io/MindBench.github.io/.
Abstract:Amidst the advancements in image-based Large Vision-Language Models (image-LVLM), the transition to video-based models (video-LVLM) is hindered by the limited availability of quality video data. This paper addresses the challenge by leveraging the visual commonalities between images and videos to efficiently evolve image-LVLMs into video-LVLMs. We present a cost-effective video-LVLM that enhances model architecture, introduces innovative training strategies, and identifies the most effective types of video instruction data. Our innovative weighted token sampler significantly compresses the visual token numbers of each video frame, effectively cutting computational expenses. We also find that judiciously using just 10% of the video data, compared to prior video-LVLMs, yields impressive results during various training phases. Moreover, we delve into the influence of video instruction data in limited-resource settings, highlighting the significance of incorporating video training data that emphasizes temporal understanding to enhance model performance. The resulting Fewer Tokens and Fewer Videos LVLM (FTFV-LVLM) exhibits exceptional performance across video and image benchmarks, validating our model's design and training approaches.
Abstract:Large Multimodal Model (LMM) is a hot research topic in the computer vision area and has also demonstrated remarkable potential across multiple disciplinary fields. A recent trend is to further extend and enhance the perception capabilities of LMMs. The current methods follow the paradigm of adapting the visual task outputs to the format of the language model, which is the main component of a LMM. This adaptation leads to convenient development of such LMMs with minimal modifications, however, it overlooks the intrinsic characteristics of diverse visual tasks and hinders the learning of perception capabilities. To address this issue, we propose a novel LMM architecture named Lumen, a Large multimodal model with versatile vision-centric capability enhancement. We decouple the LMM's learning of perception capabilities into task-agnostic and task-specific stages. Lumen first promotes fine-grained vision-language concept alignment, which is the fundamental capability for various visual tasks. Thus the output of the task-agnostic stage is a shared representation for all the tasks we address in this paper. Then the task-specific decoding is carried out by flexibly routing the shared representation to lightweight task decoders with negligible training efforts. Benefiting from such a decoupled design, our Lumen surpasses existing LMM-based approaches on the COCO detection benchmark with a clear margin and exhibits seamless scalability to additional visual tasks. Furthermore, we also conduct comprehensive ablation studies and generalization evaluations for deeper insights. The code will be released at https://github.com/SxJyJay/Lumen.
Abstract:Instruction finetuning on a variety of image-text instruction data is the key to obtaining a versatile Multimodal Large Language Model (MLLM), and different configurations of the instruction data can lead to finetuned models with different capabilities. However, we have discovered that data conflicts are inevitable when mixing instruction data from distinct domains, which can result in performance drops for tasks of a specific domain. To address this issue, we propose to apply an efficient Mixture of Experts (MoE) design, which is a sparse Mixture of LoRA Experts (MoLE) for instruction finetuning MLLMs. Within the Transformer layers, we extend the popular Low-Rank Adaption (LoRA) method by creating a set of LoRA experts specifically for the MLP layer, and route each token to the top-1 expert based on a routing function, allowing adaptive choices for tokens from different domains. Since the LoRA experts are sparsely activated, the training and inference cost are kept roughly constant compared to the original LoRA method. By replacing the plain-LoRA of LLaVA-1.5 with our MoE design, our final model is named LLaVA-MoLE. Extensive experiments proved that LLaVA-MoLE effectively mitigates the data conflict issue when mixing multiple distinct instruction datasets with various configurations, and achieves consistent performance gains over the strong plain-LoRA baselines. Most importantly, on the mixed datasets, LLaVA-MoLE can even outperform the plain-LoRA baseline trained with twice the samples.
Abstract:Camera-based bird-eye-view (BEV) perception paradigm has made significant progress in the autonomous driving field. Under such a paradigm, accurate BEV representation construction relies on reliable depth estimation for multi-camera images. However, existing approaches exhaustively predict depths for every pixel without prioritizing objects, which are precisely the entities requiring detection in the 3D space. To this end, we propose IA-BEV, which integrates image-plane instance awareness into the depth estimation process within a BEV-based detector. First, a category-specific structural priors mining approach is proposed for enhancing the efficacy of monocular depth generation. Besides, a self-boosting learning strategy is further proposed to encourage the model to place more emphasis on challenging objects in computation-expensive temporal stereo matching. Together they provide advanced depth estimation results for high-quality BEV features construction, benefiting the ultimate 3D detection. The proposed method achieves state-of-the-art performances on the challenging nuScenes benchmark, and extensive experimental results demonstrate the effectiveness of our designs.
Abstract:The task of moment localization is to localize a temporal moment in an untrimmed video for a given natural language query. Since untrimmed video contains highly redundant contents, the quality of the query is crucial for accurately localizing moments, i.e., the query should provide precise information about the target moment so that the localization model can understand what to look for in the videos. However, the natural language queries in current datasets may not be easy to understand for existing models. For example, the Ego4D dataset uses question sentences as the query to describe relatively complex moments. While being natural and straightforward for humans, understanding such question sentences are challenging for mainstream moment localization models like 2D-TAN. Inspired by the recent success of large language models, especially their ability of understanding and generating complex natural language contents, in this extended abstract, we make early attempts at reformulating the moment queries into a set of instructions using large language models and making them more friendly to the localization models.