Abstract:Significant progress has been made recently in point cloud segmentation utilizing an encoder-decoder framework, which initially encodes point clouds into low-resolution representations and subsequently decodes high-resolution predictions. Inspired by the success of high-resolution architectures in image dense prediction, which always maintains a high-resolution representation throughout the entire learning process, we consider it also highly important for 3D dense point cloud analysis. Therefore, in this paper, we explore high-resolution architectures for 3D point cloud segmentation. Specifically, we generalize high-resolution architectures using a unified pipeline named PointHR, which includes a knn-based sequence operator for feature extraction and a differential resampling operator to efficiently communicate different resolutions. Additionally, we propose to avoid numerous on-the-fly computations of high-resolution architectures by pre-computing the indices for both sequence and resampling operators. By doing so, we deliver highly competitive high-resolution architectures while capitalizing on the benefits of well-designed point cloud blocks without additional effort. To evaluate these architectures for dense point cloud analysis, we conduct thorough experiments using S3DIS and ScanNetV2 datasets, where the proposed PointHR outperforms recent state-of-the-art methods without any bells and whistles. The source code is available at \url{https://github.com/haibo-qiu/PointHR}.
Abstract:Although remarkable advancements have been made recently in point cloud analysis through the exploration of transformer architecture, it remains challenging to effectively learn local and global structures within point clouds. In this paper, we propose a new transformer architecture equipped with a collect-and-distribute mechanism to communicate short- and long-range contexts of point clouds, which we refer to as CDFormer. Specifically, we first utilize self-attention to capture short-range interactions within each local patch, and the updated local features are then collected into a set of proxy reference points from which we can extract long-range contexts. Afterward, we distribute the learned long-range contexts back to local points via cross-attention. To address the position clues for short- and long-range contexts, we also introduce context-aware position encoding to facilitate position-aware communications between points. We perform experiments on four popular point cloud datasets, namely ModelNet40, ScanObjectNN, S3DIS, and ShapeNetPart, for classification and segmentation. Results show the effectiveness of the proposed CDFormer, delivering several new state-of-the-art performances on point cloud classification and segmentation tasks. The code is available at \url{https://github.com/haibo-qiu/CDFormer}.
Abstract:Point cloud semantic segmentation from projected views, such as range-view (RV) and bird's-eye-view (BEV), has been intensively investigated. Different views capture different information of point clouds and thus are complementary to each other. However, recent projection-based methods for point cloud semantic segmentation usually utilize a vanilla late fusion strategy for the predictions of different views, failing to explore the complementary information from a geometric perspective during the representation learning. In this paper, we introduce a geometric flow network (GFNet) to explore the geometric correspondence between different views in an align-before-fuse manner. Specifically, we devise a novel geometric flow module (GFM) to bidirectionally align and propagate the complementary information across different views according to geometric relationships under the end-to-end learning scheme. We perform extensive experiments on two widely used benchmark datasets, SemanticKITTI and nuScenes, to demonstrate the effectiveness of our GFNet for project-based point cloud semantic segmentation. Concretely, GFNet not only significantly boosts the performance of each individual view but also achieves state-of-the-art results over all existing projection-based models. Code is available at \url{https://github.com/haibo-qiu/GFNet}.
Abstract:With the recent advancement of deep convolutional neural networks, significant progress has been made in general face recognition. However, the state-of-the-art general face recognition models do not generalize well to occluded face images, which are exactly the common cases in real-world scenarios. The potential reasons are the absences of large-scale occluded face data for training and specific designs for tackling corrupted features brought by occlusions. This paper presents a novel face recognition method that is robust to occlusions based on a single end-to-end deep neural network. Our approach, named FROM (Face Recognition with Occlusion Masks), learns to discover the corrupted features from the deep convolutional neural networks, and clean them by the dynamically learned masks. In addition, we construct massive occluded face images to train FROM effectively and efficiently. FROM is simple yet powerful compared to the existing methods that either rely on external detectors to discover the occlusions or employ shallow models which are less discriminative. Experimental results on the LFW, Megaface challenge 1, RMF2, AR dataset and other simulated occluded/masked datasets confirm that FROM dramatically improves the accuracy under occlusions, and generalizes well on general face recognition.
Abstract:With the recent success of deep neural networks, remarkable progress has been achieved on face recognition. However, collecting large-scale real-world training data for face recognition has turned out to be challenging, especially due to the label noise and privacy issues. Meanwhile, existing face recognition datasets are usually collected from web images, lacking detailed annotations on attributes (e.g., pose and expression), so the influences of different attributes on face recognition have been poorly investigated. In this paper, we address the above-mentioned issues in face recognition using synthetic face images, i.e., SynFace. Specifically, we first explore the performance gap between recent state-of-the-art face recognition models trained with synthetic and real face images. We then analyze the underlying causes behind the performance gap, e.g., the poor intra-class variations and the domain gap between synthetic and real face images. Inspired by this, we devise the SynFace with identity mixup (IM) and domain mixup (DM) to mitigate the above performance gap, demonstrating the great potentials of synthetic data for face recognition. Furthermore, with the controllable face synthesis model, we can easily manage different factors of synthetic face generation, including pose, expression, illumination, the number of identities, and samples per identity. Therefore, we also perform a systematically empirical analysis on synthetic face images to provide some insights on how to effectively utilize synthetic data for face recognition.
Abstract:We present an approach to recover absolute 3D human poses from multi-view images by incorporating multi-view geometric priors in our model. It consists of two separate steps: (1) estimating the 2D poses in multi-view images and (2) recovering the 3D poses from the multi-view 2D poses. First, we introduce a cross-view fusion scheme into CNN to jointly estimate 2D poses for multiple views. Consequently, the 2D pose estimation for each view already benefits from other views. Second, we present a recursive Pictorial Structure Model to recover the 3D pose from the multi-view 2D poses. It gradually improves the accuracy of 3D pose with affordable computational cost. We test our method on two public datasets H36M and Total Capture. The Mean Per Joint Position Errors on the two datasets are 26mm and 29mm, which outperforms the state-of-the-arts remarkably (26mm vs 52mm, 29mm vs 35mm). Our code is released at \url{https://github.com/microsoft/multiview-human-pose-estimation-pytorch}.