Abstract:Many studies have demonstrated that large language models (LLMs) can produce harmful responses, exposing users to unexpected risks when LLMs are deployed. Previous studies have proposed comprehensive taxonomies of the risks posed by LLMs, as well as corresponding prompts that can be used to examine the safety mechanisms of LLMs. However, the focus has been almost exclusively on English, and little has been explored for other languages. Here we aim to bridge this gap. We first introduce a dataset for the safety evaluation of Chinese LLMs, and then extend it to two other scenarios that can be used to better identify false negative and false positive examples in terms of risky prompt rejections. We further present a set of fine-grained safety assessment criteria for each risk type, facilitating both manual annotation and automatic evaluation in terms of LLM response harmfulness. Our experiments on five LLMs show that region-specific risks are the prevalent type of risk, presenting the major issue with all Chinese LLMs we experimented with. Warning: this paper contains example data that may be offensive, harmful, or biased.
Abstract:A human-in-the-loop system is proposed to enable collaborative manipulation tasks for person with physical disabilities. Studies show that the cognitive burden of subject reduces with increased autonomy of assistive system. Our framework obtains high-level intent from the user to specify manipulation tasks. The system processes sensor input to interpret the user's environment. Augmented reality glasses provide ego-centric visual feedback of the interpretation and summarize robot affordances on a menu. A tongue drive system serves as the input modality for triggering a robotic arm to execute the tasks. Assistance experiments compare the system to Cartesian control and to state-of-the-art approaches. Our system achieves competitive results with faster completion time by simplifying manipulation tasks.