Abstract:Integrated Sensing and Communications (ISAC) enables efficient spectrum utilization and reduces hardware costs for beyond 5G (B5G) and 6G networks, facilitating intelligent applications that require both high-performance communication and precise sensing capabilities. This survey provides a comprehensive review of the evolution of ISAC over the years. We examine the expansion of the spectrum across RF and optical ISAC, highlighting the role of advanced technologies, along with key challenges and synergies. We further discuss the advancements in network architecture from single-cell to multi-cell systems, emphasizing the integration of collaborative sensing and interference mitigation strategies. Moreover, we analyze the progress from single-modal to multi-modal sensing, with a focus on the integration of edge intelligence to enable real-time data processing, reduce latency, and enhance decision-making. Finally, we extensively review standardization efforts by 3GPP, IEEE, and ITU, examining the transition of ISAC-related technologies and their implications for the deployment of 6G networks.
Abstract:Communication-centric Integrated Sensing and Communication (ISAC) has been recognized as a promising methodology to implement wireless sensing functionality over existing network architectures, due to its cost-effectiveness and backward compatibility to legacy cellular systems. However, the inherent randomness of the communication signal may incur huge fluctuations in sensing capabilities, leading to unfavorable detection and estimation performance. To address this issue, we elaborate on random ISAC signal processing methods in this article, aiming at improving the sensing performance without unduly deteriorating the communication functionality. Specifically, we commence by discussing the fundamentals of sensing with random communication signals, including the performance metrics and optimal ranging waveforms. Building on these concepts, we then present a general framework for random ISAC signal transmission, followed by an in-depth exploration of time-domain pulse shaping, frequency-domain constellation shaping, and spatial-domain precoding methods. We provide a comprehensive overview of each of these topics, including models, results, and design guidelines. Finally, we conclude this article by identifying several promising research directions for random ISAC signal transmission.
Abstract:Combining wireless communication with large artificial intelligence (AI) models can open up a myriad of novel application scenarios. In sixth generation (6G) networks, ubiquitous communication and computing resources allow large AI models to serve democratic large AI models-related services to enable real-time applications like autonomous vehicles, smart cities, and Internet of Things (IoT) ecosystems. However, the security considerations and sustainable communication resources limit the deployment of large AI models over distributed wireless networks. This paper provides a comprehensive overview of privacy, security, and trustworthy for distributed wireless large AI model (WLAM). In particular, a detailed privacy and security are analysis for distributed WLAM is fist revealed. The classifications and theoretical findings about privacy and security in distributed WLAM are discussed. Then the trustworthy and ethics for implementing distributed WLAM are described. Finally, the comprehensive applications of distributed WLAM are presented in the context of electromagnetic signal processing.
Abstract:Combining wireless communication with large artificial intelligence (AI) models can open up a myriad of novel application scenarios. In sixth generation (6G) networks, ubiquitous communication and computing resources allow large AI models to serve democratic large AI models-related services to enable real-time applications like autonomous vehicles, smart cities, and Internet of Things (IoT) ecosystems. However, the security considerations and sustainable communication resources limit the deployment of large AI models over distributed wireless networks. This paper provides a comprehensive overview of privacy, security, and trustworthy for distributed wireless large AI model (WLAM). In particular, the detailed privacy and security are analysis for distributed WLAM is fist revealed. The classifications and theoretical findings about privacy and security in distributed WLAM are discussed. Then the trustworthy and ethics for implementing distributed WLAM are described. Finally, the comprehensive applications of distributed WLAM is provided in the aspect of electromagnetic signal processing.
Abstract:Extremely Large-scale Array (ELAA) is considered a frontier technology for future communication systems, pivotal in improving wireless systems' rate and spectral efficiency. However, as ELAA employs a multitude of antennas operating at higher frequencies, users are typically situated in the near-field region where the spherical wavefront propagates. This inevitably leads to a significant increase in the overhead of beam training, requiring complex two-dimensional beam searching in both the angle domain and the distance domain. To address this problem, we propose a near-field beamforming method based on unsupervised deep learning. Our convolutional neural network efficiently extracts complex channel state information features by strategically selecting padding and kernel size. We optimize the beamformers to maximize achievable rates in a multi-user network without relying on predefined custom codebooks. Upon deployment, the model requires solely the input of pre-estimated channel state information to derive the optimal beamforming vector. Simulation results show that our proposed scheme can obtain stable beamforming gain compared with the baseline scheme. Furthermore, owing to the inherent traits of deep learning methodologies, this approach substantially diminishes the beam training costs in near-field regions.
Abstract:Integrated sensing and communication (ISAC) system stands out as a pivotal usage scenario of 6G. To explore the coordination gains offered by the ISAC technique, this paper introduces a novel communication-assisted sensing (CAS) system. The CAS system can endow users with beyond-line-of-sight sensing capability, wherein the base station with favorable visibility senses device-free targets, simultaneously transmitting the acquired sensory information to users. Within the CAS framework, we characterize the fundamental limits to reveal the achievable distortion between the state of the targets of interest and their reconstruction at the users' end. Finally, within the confines of this theoretical framework, we employ a typical application as an illustrative example to demonstrate the minimization of distortion through dual-functional waveform design, showcasing the potential of CAS in enhancing sensing capabilities.
Abstract:Integrated Sensing and Communications (ISAC) has garnered significant attention as a promising technology for the upcoming sixth-generation wireless communication systems (6G). In pursuit of this goal, a common strategy is that a unified waveform, such as Orthogonal Frequency Division Multiplexing (OFDM), should serve dual-functional roles by enabling simultaneous sensing and communications (S&C) operations. However, the sensing performance of an OFDM communication signal is substantially affected by the randomness of the data symbols mapped from bit streams. Therefore, achieving a balance between preserving communication capability (i.e., the randomness) while improving sensing performance remains a challenging task. To cope with this issue, in this paper we analyze the ambiguity function of the OFDM communication signal modulated by random data. Subsequently, a probabilistic constellation shaping (PCS) method is proposed to devise the probability distributions of constellation points, which is able to strike a scalable S&C tradeoff of the random transmitted signal. Finally, the superiority of the proposed PCS method over conventional uniformly distributed constellations is validated through numerical simulations.
Abstract:Sensing-as-a-service is anticipated to be the core feature of 6G perceptive mobile networks (PMN), where high-precision real-time sensing will become an inherent capability rather than being an auxiliary function as before. With the proliferation of wireless connected devices, resource allocation in terms of the users' specific quality-of-service (QoS) requirements plays a pivotal role to enhance the interference management ability and resource utilization efficiency. In this article, we comprehensively introduce the concept of sensing service in PMN, including the types of tasks, the distinctions/advantages compared to conventional networks, and the definitions of sensing QoS. Subsequently, we provide a unified RA framework in sensing-centric PMN and elaborate on the unique challenges. Furthermore, we present a typical case study named "communication-assisted sensing" and evaluate the performance trade-off between sensing and communication procedure. Finally, we shed light on several open problems and opportunities deserving further investigation in the future.
Abstract:In this paper, we investigate the design of energy-efficient beamforming for an ISAC system, where the transmitted waveform is optimized for joint multi-user communication and target estimation simultaneously. We aim to maximize the system energy efficiency (EE), taking into account the constraints of a maximum transmit power budget, a minimum required signal-to-interference-plus-noise ratio (SINR) for communication, and a maximum tolerable Cramer-Rao bound (CRB) for target estimation. We first consider communication-centric EE maximization. To handle the non-convex fractional objective function, we propose an iterative quadratic-transform-Dinkelbach method, where Schur complement and semi-definite relaxation (SDR) techniques are leveraged to solve the subproblem in each iteration. For the scenarios where sensing is critical, we propose a novel performance metric for characterizing the sensing-centric EE and optimize the metric adopted in the scenario of sensing a point-like target and an extended target. To handle the nonconvexity, we employ the successive convex approximation (SCA) technique to develop an efficient algorithm for approximating the nonconvex problem as a sequence of convex ones. Furthermore, we adopt a Pareto optimization mechanism to articulate the tradeoff between the communication-centric EE and sensing-centric EE. We formulate the search of the Pareto boundary as a constrained optimization problem and propose a computationally efficient algorithm to handle it. Numerical results validate the effectiveness of our proposed algorithms compared with the baseline schemes and the obtained approximate Pareto boundary shows that there is a non-trivial tradeoff between communication-centric EE and sensing-centric EE, where the number of communication users and EE requirements have serious effects on the achievable tradeoff.
Abstract:The integrated sensing and communication (ISAC) technique has the potential to achieve coordination gain by exploiting the mutual assistance between sensing and communication (S&C) functions. While the sensing-assisted communications (SAC) technology has been extensively studied for high-mobility scenarios, the communication-assisted sensing (CAS) counterpart remains widely unexplored. This paper presents a waveform design framework for CAS in 6G perceptive networks, aiming to attain an optimal sensing quality of service (QoS) at the user after the target's parameters successively ``pass-through'' the S$\&$C channels. In particular, a pair of transmission schemes, namely, separated S&C and dual-functional waveform designs, are proposed to optimize the sensing QoS under the constraints of the rate-distortion and power budget. The first scheme reveals a power allocation trade-off, while the latter presents a water-filling trade-off. Numerical results demonstrate the effectiveness of the proposed algorithms, where the dual-functional scheme exhibits approximately 12% performance gain compared to its separated waveform design counterpart.