Abstract:Integrated sensing and communication (ISAC) system stands out as a pivotal usage scenario of 6G. To explore the coordination gains offered by the ISAC technique, this paper introduces a novel communication-assisted sensing (CAS) system. The CAS system can endow users with beyond-line-of-sight sensing capability, wherein the base station with favorable visibility senses device-free targets, simultaneously transmitting the acquired sensory information to users. Within the CAS framework, we characterize the fundamental limits to reveal the achievable distortion between the state of the targets of interest and their reconstruction at the users' end. Finally, within the confines of this theoretical framework, we employ a typical application as an illustrative example to demonstrate the minimization of distortion through dual-functional waveform design, showcasing the potential of CAS in enhancing sensing capabilities.