Abstract:Unmanned aerial vehicles (UAVs) have gained considerable attention as a platform for establishing aerial wireless networks and communications. However, the line-of-sight dominance in air-to-ground communications often leads to significant interference with terrestrial networks, reducing communication efficiency among terrestrial terminals. This paper explores a novel uplink interference mitigation approach based on the collaborative beamforming (CB) method in multi-UAV network systems. Specifically, the UAV swarm forms a UAV-enabled virtual antenna array (VAA) to achieve the transmissions of gathered data to multiple base stations (BSs) for data backup and distributed processing. However, there is a trade-off between the effectiveness of CB-based interference mitigation and the energy conservation of UAVs. Thus, by jointly optimizing the excitation current weights and hover position of UAVs as well as the sequence of data transmission to various BSs, we formulate an uplink interference mitigation multi-objective optimization problem (MOOP) to decrease interference affection, enhance transmission efficiency, and improve energy efficiency, simultaneously. In response to the computational demands of the formulated problem, we introduce an evolutionary computation method, namely chaotic non-dominated sorting genetic algorithm II (CNSGA-II) with multiple improved operators. The proposed CNSGA-II efficiently addresses the formulated MOOP, outperforming several other comparative algorithms, as evidenced by the outcomes of the simulations. Moreover, the proposed CB-based uplink interference mitigation approach can significantly reduce the interference caused by UAVs to non-receiving BSs.
Abstract:In the era of the sixth generation (6G) and industrial Internet of Things (IIoT), an industrial cyber-physical system (ICPS) drives the proliferation of sensor devices and computing-intensive tasks. To address the limited resources of IIoT sensor devices, unmanned aerial vehicle (UAV)-assisted mobile edge computing (MEC) has emerged as a promising solution, providing flexible and cost-effective services in close proximity of IIoT sensor devices (ISDs). However, leveraging aerial MEC to meet the delay-sensitive and computation-intensive requirements of the ISDs could face several challenges, including the limited communication, computation and caching (3C) resources, stringent offloading requirements for 3C services, and constrained on-board energy of UAVs. To address these issues, we first present a collaborative aerial MEC-assisted ICPS architecture by incorporating the computing capabilities of the macro base station (MBS) and UAVs. We then formulate a service delay minimization optimization problem (SDMOP). Since the SDMOP is proved to be an NP-hard problem, we propose a joint computation offloading, caching, communication resource allocation, computation resource allocation, and UAV trajectory control approach (JC5A). Specifically, JC5A consists of a block successive upper bound minimization method of multipliers (BSUMM) for computation offloading and service caching, a convex optimization-based method for communication and computation resource allocation, and a successive convex approximation (SCA)-based method for UAV trajectory control. Moreover, we theoretically prove the convergence and polynomial complexity of JC5A. Simulation results demonstrate that the proposed approach can achieve superior system performance compared to the benchmark approaches and algorithms.
Abstract:Integrated sensing and communications (ISAC) is expected to be a key technology for 6G, and channel state information (CSI) based sensing is a key component of ISAC. However, current research on ISAC focuses mainly on improving sensing performance, overlooking security issues, particularly the unauthorized sensing of users. In this paper, we propose a secure sensing system (DFSS) based on two distinct diffusion models. Specifically, we first propose a discrete conditional diffusion model to generate graphs with nodes and edges, guiding the ISAC system to appropriately activate wireless links and nodes, which ensures the sensing performance while minimizing the operation cost. Using the activated links and nodes, DFSS then employs the continuous conditional diffusion model to generate safeguarding signals, which are next modulated onto the pilot at the transmitter to mask fluctuations caused by user activities. As such, only ISAC devices authorized with the safeguarding signals can extract the true CSI for sensing, while unauthorized devices are unable to achieve the same sensing. Experiment results demonstrate that DFSS can reduce the activity recognition accuracy of the unauthorized devices by approximately 70%, effectively shield the user from the unauthorized surveillance.
Abstract:Internet of Things (IoT) devices are typically powered by small-sized batteries with limited energy storage capacity, requiring regular replacement or recharging. To reduce costs and maintain connectivity in IoT networks, energy harvesting technologies are regarded as a promising solution. Notably, due to its robust analytical and generative capabilities, generative artificial intelligence (GenAI) has demonstrated significant potential in optimizing energy harvesting networks. Therefore, we discuss key applications of GenAI in improving energy harvesting wireless networks for IoT in this article. Specifically, we first review the key technologies of GenAI and the architecture of energy harvesting wireless networks. Then, we show how GenAI can address different problems to improve the performance of the energy harvesting wireless networks. Subsequently, we present a case study of unmanned aerial vehicle (UAV)-enabled data collection and energy transfer. The case study shows distinctively the necessity of energy harvesting technology and verify the effectiveness of GenAI-based methods. Finally, we discuss some important open directions.
Abstract:Due to flexibility and low-cost, unmanned aerial vehicles (UAVs) are increasingly crucial for enhancing coverage and functionality of wireless networks. However, incorporating UAVs into next-generation wireless communication systems poses significant challenges, particularly in sustaining high-rate and long-range secure communications against eavesdropping attacks. In this work, we consider a UAV swarm-enabled secure surveillance network system, where a UAV swarm forms a virtual antenna array to transmit sensitive surveillance data to a remote base station (RBS) via collaborative beamforming (CB) so as to resist mobile eavesdroppers. Specifically, we formulate an aerial secure communication and energy efficiency multi-objective optimization problem (ASCEE-MOP) to maximize the secrecy rate of the system and to minimize the flight energy consumption of the UAV swarm. To address the non-convex, NP-hard and dynamic ASCEE-MOP, we propose a generative diffusion model-enabled twin delayed deep deterministic policy gradient (GDMTD3) method. Specifically, GDMTD3 leverages an innovative application of diffusion models to determine optimal excitation current weights and position decisions of UAVs. The diffusion models can better capture the complex dynamics and the trade-off of the ASCEE-MOP, thereby yielding promising solutions. Simulation results highlight the superior performance of the proposed approach compared with traditional deployment strategies and some other deep reinforcement learning (DRL) benchmarks. Moreover, performance analysis under various parameter settings of GDMTD3 and different numbers of UAVs verifies the robustness of the proposed approach.
Abstract:Integrated Sensing and Communications (ISAC) is one of the core technologies of 6G, which combines sensing and communication functions into a single system. However, limited computing and storage resources make it impractical to combine multiple sensing models into a single device, constraining the system's function and performance. Therefore, this article proposes enhancing ISAC with the mixture of experts (MoE) architecture. Rigorously, we first investigate ISAC and MoE, including their concepts, advantages, and applications. Then, we explore how MoE can enhance ISAC from the perspectives of signal processing and network optimization. Building on this, we propose an MoE based ISAC framework, which uses a gating network to selectively activate multiple experts in handling sensing tasks under given communication conditions, thereby improving the overall performance. The case study demonstrates that the proposed framework can effectively increase the accuracy and robustness in detecting targets by using wireless communication signal, providing strong support for the practical deployment and applications of the ISAC system.
Abstract:As a form of artificial intelligence (AI) technology based on interactive learning, deep reinforcement learning (DRL) has been widely applied across various fields and has achieved remarkable accomplishments. However, DRL faces certain limitations, including low sample efficiency and poor generalization. Therefore, we present how to leverage generative AI (GAI) to address these issues above and enhance the performance of DRL algorithms in this paper. We first introduce several classic GAI and DRL algorithms and demonstrate the applications of GAI-enhanced DRL algorithms. Then, we discuss how to use GAI to improve DRL algorithms from the data and policy perspectives. Subsequently, we introduce a framework that demonstrates an actual and novel integration of GAI with DRL, i.e., GAI-enhanced DRL. Additionally, we provide a case study of the framework on UAV-assisted integrated near-field/far-field communication to validate the performance of the proposed framework. Moreover, we present several future directions. Finally, the related code is available at: https://xiewenwen22.github.io/GAI-enhanced-DRL.
Abstract:With the impressive achievements of chatGPT and Sora, generative artificial intelligence (GAI) has received increasing attention. Not limited to the field of content generation, GAI is also widely used to solve the problems in wireless communication scenarios due to its powerful learning and generalization capabilities. Therefore, we discuss key applications of GAI in improving unmanned aerial vehicle (UAV) communication and networking performance in this article. Specifically, we first review the key technologies of GAI and the important roles of UAV networking. Then, we show how GAI can improve the communication, networking, and security performances of UAV systems. Subsequently, we propose a novel framework of GAI for advanced UAV networking, and then present a case study of UAV-enabled spectrum map estimation and transmission rate optimization based on the proposed framework to verify the effectiveness of GAI-enabled UAV systems. Finally, we discuss some important open directions.
Abstract:In this paper, we investigate an unmanned aerial vehicle (UAV)-assistant air-to-ground communication system, where multiple UAVs form a UAV-enabled virtual antenna array (UVAA) to communicate with remote base stations by utilizing collaborative beamforming. To improve the work efficiency of the UVAA, we formulate a UAV-enabled collaborative beamforming multi-objective optimization problem (UCBMOP) to simultaneously maximize the transmission rate of the UVAA and minimize the energy consumption of all UAVs by optimizing the positions and excitation current weights of all UAVs. This problem is challenging because these two optimization objectives conflict with each other, and they are non-concave to the optimization variables. Moreover, the system is dynamic, and the cooperation among UAVs is complex, making traditional methods take much time to compute the optimization solution for a single task. In addition, as the task changes, the previously obtained solution will become obsolete and invalid. To handle these issues, we leverage the multi-agent deep reinforcement learning (MADRL) to address the UCBMOP. Specifically, we use the heterogeneous-agent trust region policy optimization (HATRPO) as the basic framework, and then propose an improved HATRPO algorithm, namely HATRPO-UCB, where three techniques are introduced to enhance the performance. Simulation results demonstrate that the proposed algorithm can learn a better strategy compared with other methods. Moreover, extensive experiments also demonstrate the effectiveness of the proposed techniques.
Abstract:In this paper, we propose a distributed collaborative beamforming (DCB)-based uplink communication paradigm for enabling ground-space direct communications. Specifically, DCB treats the terminals that are unable to establish efficient direct connections with the low Earth orbit (LEO) satellites as distributed antennas, forming a virtual antenna array to enhance the terminal-to-satellite uplink achievable rates and durations. However, such systems need multiple trade-off policies that variously balance the terminal-satellite uplink achievable rate, energy consumption of terminals, and satellite switching frequency to satisfy the scenario requirement changes. Thus, we perform a multi-objective optimization analysis and formulate a long-term optimization problem. To address availability in different terminal cluster scales, we reformulate this problem into an action space-reduced and universal multi-objective Markov decision process. Then, we propose an evolutionary multi-objective deep reinforcement learning algorithm to obtain the desirable policies, in which the low-value actions are masked to speed up the training process. As such, the applicability of a one-time trained model can cover more changing terminal-satellite uplink scenarios. Simulation results show that the proposed algorithm outmatches various baselines, and draw some useful insights. Specifically, it is found that DCB enables terminals that cannot reach the uplink achievable threshold to achieve efficient direct uplink transmission, which thus reveals that DCB is an effective solution for enabling direct ground-space communications. Moreover, it reveals that the proposed algorithm achieves multiple policies favoring different objectives and achieving near-optimal uplink achievable rates with low switching frequency.