Abstract:The low-altitude economy (LAE), driven by unmanned aerial vehicles (UAVs) and other aircraft, has revolutionized fields such as transportation, agriculture, and environmental monitoring. In the upcoming six-generation (6G) era, UAV-assisted mobile edge computing (MEC) is particularly crucial in challenging environments such as mountainous or disaster-stricken areas. The computation task offloading problem is one of the key issues in UAV-assisted MEC, primarily addressing the trade-off between minimizing the task delay and the energy consumption of the UAV. In this paper, we consider a UAV-assisted MEC system where the UAV carries the edge servers to facilitate task offloading for ground devices (GDs), and formulate a calculation delay and energy consumption multi-objective optimization problem (CDECMOP) to simultaneously improve the performance and reduce the cost of the system. Then, by modeling the formulated problem as a multi-objective Markov decision process (MOMDP), we propose a multi-objective deep reinforcement learning (DRL) algorithm within an evolutionary framework to dynamically adjust the weights and obtain non-dominated policies. Moreover, to ensure stable convergence and improve performance, we incorporate a target distribution learning (TDL) algorithm. Simulation results demonstrate that the proposed algorithm can better balance multiple optimization objectives and obtain superior non-dominated solutions compared to other methods.
Abstract:The low-altitude economy (LAE) plays an indispensable role in cargo transportation, healthcare, infrastructure inspection, and especially post-disaster communication. Specifically, unmanned aerial vehicles (UAVs), as one of the core technologies of the LAE, can be deployed to provide communication coverage, facilitate data collection, and relay data for trapped users, thereby significantly enhancing the efficiency of post-disaster response efforts. In this paper, we design an efficient and robust UAV-swarm enabled collaborative self-organizing network to facilitate post-disaster communications. Specifically, a ground device transmits data to UAV swarms, which then use collaborative beamforming (CB) technique to form virtual antenna arrays and relay the data to a remote access point (AP) efficiently. Then, we formulate a rescue-oriented post-disaster transmission rate maximization optimization problem (RPTRMOP). Then, we propose a two-stage optimization approach to address it. In the first stage, the optimal traffic routing and the theoretical upper bound on the transmission rate of the network are derived. In the second stage, we transform the formulated RPTRMOP into a variant named V-RPTRMOP, and a diffusion model-enabled particle swarm optimization (DM-PSO) algorithm is proposed to deal with the V-RPTRMOP. Simulation results show the effectiveness of the proposed two-stage optimization approach in improving the transmission rate of the constructed network, which demonstrates the great potential for post-disaster communications. Moreover, the robustness of the constructed network is also validated via evaluating the impact of two unexpected situations on the system transmission rate.
Abstract:Multi-access edge computing (MEC) is emerging as a promising paradigm to provide flexible computing services close to user devices (UDs). However, meeting the computation-hungry and delay-sensitive demands of UDs faces several challenges, including the resource constraints of MEC servers, inherent dynamic and complex features in the MEC system, and difficulty in dealing with the time-coupled and decision-coupled optimization. In this work, we first present an edge-cloud collaborative MEC architecture, where the MEC servers and cloud collaboratively provide offloading services for UDs. Moreover, we formulate an energy-efficient and delay-aware optimization problem (EEDAOP) to minimize the energy consumption of UDs under the constraints of task deadlines and long-term queuing delays. Since the problem is proved to be non-convex mixed integer nonlinear programming (MINLP), we propose an online joint communication resource allocation and task offloading approach (OJCTA). Specifically, we transform EEDAOP into a real-time optimization problem by employing the Lyapunov optimization framework. Then, to solve the real-time optimization problem, we propose a communication resource allocation and task offloading optimization method by employing the Tammer decomposition mechanism, convex optimization method, bilateral matching mechanism, and dependent rounding method. Simulation results demonstrate that the proposed OJCTA can achieve superior system performance compared to the benchmark approaches.
Abstract:Low altitude economy (LAE) holds immense potential to drive urban development across various sectors. However, LAE also faces challenges in data collection and processing efficiency, flight control precision, and network performance. The challenges could be solved by realizing an integration of sensing, communications, computation, and control (ISC3) for LAE. In this regard, embodied artificial intelligence (EAI), with its unique perception, planning, and decision-making capabilities, offers a promising solution to realize ISC3. Specifically, this paper investigates an application of EAI into ISC3 to support LAE, exploring potential research focuses, solutions, and case study. We begin by outlining rationales and benefits of introducing EAI into LAE, followed by reviewing research directions and solutions for EAI in ISC3. We then propose a framework of an EAI-enabled ISC3 for LAE. The framework's effectiveness is evaluated through a case study of express delivery utilizing an EAI-enabled UAV. Finally, we discuss several future research directions for advancing EAI-enabled LAE.
Abstract:Unmanned aerial vehicles (UAVs) have gained considerable attention as a platform for establishing aerial wireless networks and communications. However, the line-of-sight dominance in air-to-ground communications often leads to significant interference with terrestrial networks, reducing communication efficiency among terrestrial terminals. This paper explores a novel uplink interference mitigation approach based on the collaborative beamforming (CB) method in multi-UAV network systems. Specifically, the UAV swarm forms a UAV-enabled virtual antenna array (VAA) to achieve the transmissions of gathered data to multiple base stations (BSs) for data backup and distributed processing. However, there is a trade-off between the effectiveness of CB-based interference mitigation and the energy conservation of UAVs. Thus, by jointly optimizing the excitation current weights and hover position of UAVs as well as the sequence of data transmission to various BSs, we formulate an uplink interference mitigation multi-objective optimization problem (MOOP) to decrease interference affection, enhance transmission efficiency, and improve energy efficiency, simultaneously. In response to the computational demands of the formulated problem, we introduce an evolutionary computation method, namely chaotic non-dominated sorting genetic algorithm II (CNSGA-II) with multiple improved operators. The proposed CNSGA-II efficiently addresses the formulated MOOP, outperforming several other comparative algorithms, as evidenced by the outcomes of the simulations. Moreover, the proposed CB-based uplink interference mitigation approach can significantly reduce the interference caused by UAVs to non-receiving BSs.
Abstract:In the era of the sixth generation (6G) and industrial Internet of Things (IIoT), an industrial cyber-physical system (ICPS) drives the proliferation of sensor devices and computing-intensive tasks. To address the limited resources of IIoT sensor devices, unmanned aerial vehicle (UAV)-assisted mobile edge computing (MEC) has emerged as a promising solution, providing flexible and cost-effective services in close proximity of IIoT sensor devices (ISDs). However, leveraging aerial MEC to meet the delay-sensitive and computation-intensive requirements of the ISDs could face several challenges, including the limited communication, computation and caching (3C) resources, stringent offloading requirements for 3C services, and constrained on-board energy of UAVs. To address these issues, we first present a collaborative aerial MEC-assisted ICPS architecture by incorporating the computing capabilities of the macro base station (MBS) and UAVs. We then formulate a service delay minimization optimization problem (SDMOP). Since the SDMOP is proved to be an NP-hard problem, we propose a joint computation offloading, caching, communication resource allocation, computation resource allocation, and UAV trajectory control approach (JC5A). Specifically, JC5A consists of a block successive upper bound minimization method of multipliers (BSUMM) for computation offloading and service caching, a convex optimization-based method for communication and computation resource allocation, and a successive convex approximation (SCA)-based method for UAV trajectory control. Moreover, we theoretically prove the convergence and polynomial complexity of JC5A. Simulation results demonstrate that the proposed approach can achieve superior system performance compared to the benchmark approaches and algorithms.
Abstract:Integrated sensing and communications (ISAC) is expected to be a key technology for 6G, and channel state information (CSI) based sensing is a key component of ISAC. However, current research on ISAC focuses mainly on improving sensing performance, overlooking security issues, particularly the unauthorized sensing of users. In this paper, we propose a secure sensing system (DFSS) based on two distinct diffusion models. Specifically, we first propose a discrete conditional diffusion model to generate graphs with nodes and edges, guiding the ISAC system to appropriately activate wireless links and nodes, which ensures the sensing performance while minimizing the operation cost. Using the activated links and nodes, DFSS then employs the continuous conditional diffusion model to generate safeguarding signals, which are next modulated onto the pilot at the transmitter to mask fluctuations caused by user activities. As such, only ISAC devices authorized with the safeguarding signals can extract the true CSI for sensing, while unauthorized devices are unable to achieve the same sensing. Experiment results demonstrate that DFSS can reduce the activity recognition accuracy of the unauthorized devices by approximately 70%, effectively shield the user from the unauthorized surveillance.
Abstract:Internet of Things (IoT) devices are typically powered by small-sized batteries with limited energy storage capacity, requiring regular replacement or recharging. To reduce costs and maintain connectivity in IoT networks, energy harvesting technologies are regarded as a promising solution. Notably, due to its robust analytical and generative capabilities, generative artificial intelligence (GenAI) has demonstrated significant potential in optimizing energy harvesting networks. Therefore, we discuss key applications of GenAI in improving energy harvesting wireless networks for IoT in this article. Specifically, we first review the key technologies of GenAI and the architecture of energy harvesting wireless networks. Then, we show how GenAI can address different problems to improve the performance of the energy harvesting wireless networks. Subsequently, we present a case study of unmanned aerial vehicle (UAV)-enabled data collection and energy transfer. The case study shows distinctively the necessity of energy harvesting technology and verify the effectiveness of GenAI-based methods. Finally, we discuss some important open directions.
Abstract:Due to flexibility and low-cost, unmanned aerial vehicles (UAVs) are increasingly crucial for enhancing coverage and functionality of wireless networks. However, incorporating UAVs into next-generation wireless communication systems poses significant challenges, particularly in sustaining high-rate and long-range secure communications against eavesdropping attacks. In this work, we consider a UAV swarm-enabled secure surveillance network system, where a UAV swarm forms a virtual antenna array to transmit sensitive surveillance data to a remote base station (RBS) via collaborative beamforming (CB) so as to resist mobile eavesdroppers. Specifically, we formulate an aerial secure communication and energy efficiency multi-objective optimization problem (ASCEE-MOP) to maximize the secrecy rate of the system and to minimize the flight energy consumption of the UAV swarm. To address the non-convex, NP-hard and dynamic ASCEE-MOP, we propose a generative diffusion model-enabled twin delayed deep deterministic policy gradient (GDMTD3) method. Specifically, GDMTD3 leverages an innovative application of diffusion models to determine optimal excitation current weights and position decisions of UAVs. The diffusion models can better capture the complex dynamics and the trade-off of the ASCEE-MOP, thereby yielding promising solutions. Simulation results highlight the superior performance of the proposed approach compared with traditional deployment strategies and some other deep reinforcement learning (DRL) benchmarks. Moreover, performance analysis under various parameter settings of GDMTD3 and different numbers of UAVs verifies the robustness of the proposed approach.
Abstract:Integrated Sensing and Communications (ISAC) is one of the core technologies of 6G, which combines sensing and communication functions into a single system. However, limited computing and storage resources make it impractical to combine multiple sensing models into a single device, constraining the system's function and performance. Therefore, this article proposes enhancing ISAC with the mixture of experts (MoE) architecture. Rigorously, we first investigate ISAC and MoE, including their concepts, advantages, and applications. Then, we explore how MoE can enhance ISAC from the perspectives of signal processing and network optimization. Building on this, we propose an MoE based ISAC framework, which uses a gating network to selectively activate multiple experts in handling sensing tasks under given communication conditions, thereby improving the overall performance. The case study demonstrates that the proposed framework can effectively increase the accuracy and robustness in detecting targets by using wireless communication signal, providing strong support for the practical deployment and applications of the ISAC system.