Abstract:Unmanned Aerial Vehicles (UAVs) possess high mobility and flexible deployment capabilities, prompting the development of UAVs for various application scenarios within the Internet of Things (IoT). The unique capabilities of UAVs give rise to increasingly critical and complex tasks in uncertain and potentially harsh environments. The substantial amount of data generated from these applications necessitates processing and analysis through deep neural networks (DNNs). However, UAVs encounter challenges due to their limited computing resources when managing DNN models. This paper presents a joint approach that combines multiple-agent reinforcement learning (MARL) and generative diffusion models (GDM) for assigning DNN tasks to a UAV swarm, aimed at reducing latency from task capture to result output. To address these challenges, we first consider the task size of the target area to be inspected and the shortest flying path as optimization constraints, employing a greedy algorithm to resolve the subproblem with a focus on minimizing the UAV's flying path and the overall system cost. In the second stage, we introduce a novel DNN task assignment algorithm, termed GDM-MADDPG, which utilizes the reverse denoising process of GDM to replace the actor network in multi-agent deep deterministic policy gradient (MADDPG). This approach generates specific DNN task assignment actions based on agents' observations in a dynamic environment. Simulation results indicate that our algorithm performs favorably compared to benchmarks in terms of path planning, Age of Information (AoI), energy consumption, and task load balancing.
Abstract:This letter proposes an in-sensor computing multiply-and-accumulate (MAC) circuit based on capacitance. The MAC circuits can constitute an artificial neural network(ANN) layer and be operated as ANN classifiers and autoencoders. The proposed circuit is a promising scheme for capacitive ANN image sensors, showing competitively high efficiency and lower power.
Abstract:Filter pruning is widely adopted to compress and accelerate the Convolutional Neural Networks (CNNs), but most previous works ignore the relationship between filters and channels in different layers. Processing each layer independently fails to utilize the collaborative relationship across layers. In this paper, we intuitively propose a novel pruning method by explicitly leveraging the Filters Similarity in Consecutive Layers (FSCL). FSCL compresses models by pruning filters whose corresponding features are more worthless in the model. The extensive experiments demonstrate the effectiveness of FSCL, and it yields remarkable improvement over state-of-the-art on accuracy, FLOPs and parameter reduction on several benchmark models and datasets.
Abstract:Recently, some mixture algorithms of pointwise and pairwise learning (PPL) have been formulated by employing the hybrid error metric of "pointwise loss + pairwise loss" and have shown empirical effectiveness on feature selection, ranking and recommendation tasks. However, to the best of our knowledge, the learning theory foundation of PPL has not been touched in the existing works. In this paper, we try to fill this theoretical gap by investigating the generalization properties of PPL. After extending the definitions of algorithmic stability to the PPL setting, we establish the high-probability generalization bounds for uniformly stable PPL algorithms. Moreover, explicit convergence rates of stochastic gradient descent (SGD) and regularized risk minimization (RRM) for PPL are stated by developing the stability analysis technique of pairwise learning. In addition, the refined generalization bounds of PPL are obtained by replacing uniform stability with on-average stability.
Abstract:Contrastive learning (CL) has become a ubiquitous approach for several natural language processing (NLP) downstream tasks, especially for question answering (QA). However, the major challenge, how to efficiently train the knowledge retrieval model in an unsupervised manner, is still unresolved. Recently the commonly used methods are composed of CL and masked language model (MLM). Unexpectedly, MLM ignores the sentence-level training, and CL also neglects extraction of the internal info from the query. To optimize the CL hardly obtain internal information from the original query, we introduce a joint training method by combining CL and Auto-MLM for self-supervised multi-lingual knowledge retrieval. First, we acquire the fixed dimensional sentence vector. Then, mask some words among the original sentences with random strategy. Finally, we generate a new token representation for predicting the masked tokens. Experimental results show that our proposed approach consistently outperforms all the previous SOTA methods on both AliExpress $\&$ LAZADA service corpus and openly available corpora in 8 languages.
Abstract:Speaker diarization is connected to semantic segmentation in computer vision. Inspired from MaskFormer \cite{cheng2021per} which treats semantic segmentation as a set-prediction problem, we propose an end-to-end approach to predict a set of targets consisting of binary masks, vocal activities and speaker vectors. Our model, which we coin \textit{DiFormer}, is mainly based on a speaker encoder and a feature pyramid network (FPN) module to extract multi-scale speaker features which are then fed into a transformer encoder-decoder to predict a set of diarization targets from learned query embedding. To account for temporal characteristics of speech signal, bidirectional LSTMs are inserted into the mask prediction module to improve temporal consistency. Our model handles unknown number of speakers, speech overlaps, as well as vocal activity detection in a unified way. Experiments on multimedia and meeting datasets demonstrate the effectiveness of our approach.
Abstract:Modeling semantic information is helpful for scene text recognition. In this work, we propose to model semantic and visual information jointly with a Visual-Semantic Transformer (VST). The VST first explicitly extracts primary semantic information from visual feature maps with a transformer module and a primary visual-semantic alignment module. The semantic information is then joined with the visual feature maps (viewed as a sequence) to form a pseudo multi-domain sequence combining visual and semantic information, which is subsequently fed into an transformer-based interaction module to enable learning of interactions between visual and semantic features. In this way, the visual features can be enhanced by the semantic information and vice versus. The enhanced version of visual features are further decoded by a secondary visual-semantic alignment module which shares weights with the primary one. Finally, the decoded visual features and the enhanced semantic features are jointly processed by the third transformer module obtaining the final text prediction. Experiments on seven public benchmarks including regular/ irregular text recognition datasets verifies the effectiveness our proposed model, reaching state of the art on four of the seven benchmarks.
Abstract:In this technical report, we introduce the methods of HIKVISION_LiDAR_Det in the challenge of waymo open dataset real-time 3D detection. Our solution for the competition are built upon Centerpoint 3D detection framework. Several variants of CenterPoint are explored, including center attention head and feature pyramid network neck. In order to achieve real time detection, methods like batchnorm merge, half-precision floating point network and GPU-accelerated voxelization process are adopted. By using these methods, our team ranks 6th among all the methods on real-time 3D detection challenge in the waymo open dataset.
Abstract:This paper presents our solution for the ICDAR 2021 Competition on Scientific Table Image Recognition to LaTeX. This competition has two sub-tasks: Table Structure Reconstruction (TSR) and Table Content Reconstruction (TCR). We treat both sub-tasks as two individual image-to-sequence recognition problems. We leverage our previously proposed algorithm MASTER \cite{lu2019master}, which is originally proposed for scene text recognition. We optimize the MASTER model from several perspectives: network structure, optimizer, normalization method, pre-trained model, resolution of input image, data augmentation, and model ensemble. Our method achieves 0.7444 Exact Match and 0.8765 Exact Match @95\% on the TSR task, and obtains 0.5586 Exact Match and 0.7386 Exact Match 95\% on the TCR task.
Abstract:To improve device robustness, a highly desirable key feature of a competitive data-driven acoustic scene classification (ASC) system, a novel two-stage system based on fully convolutional neural networks (CNNs) is proposed. Our two-stage system leverages on an ad-hoc score combination based on two CNN classifiers: (i) the first CNN classifies acoustic inputs into one of three broad classes, and (ii) the second CNN classifies the same inputs into one of ten finer-grained classes. Three different CNN architectures are explored to implement the two-stage classifiers, and a frequency sub-sampling scheme is investigated. Moreover, novel data augmentation schemes for ASC are also investigated. Evaluated on DCASE 2020 Task 1a, our results show that the proposed ASC system attains a state-of-the-art accuracy on the development set, where our best system, a two-stage fusion of CNN ensembles, delivers a 81.9% average accuracy among multi-device test data, and it obtains a significant improvement on unseen devices. Finally, neural saliency analysis with class activation mapping (CAM) gives new insights on the patterns learnt by our models.