Department of Electrical and Computer Engineering, McMaster University, Hamilton, Canada
Abstract:Deep learning has shown remarkable success in medical image analysis, but its reliance on large volumes of high-quality labeled data limits its applicability. While noisy labeled data are easier to obtain, directly incorporating them into training can degrade model performance. To address this challenge, we propose a Mean Teacher-based Adaptive Label Correction (ALC) self-ensemble framework for robust medical image segmentation with noisy labels. The framework leverages the Mean Teacher architecture to ensure consistent learning under noise perturbations. It includes an adaptive label refinement mechanism that dynamically captures and weights differences across multiple disturbance versions to enhance the quality of noisy labels. Additionally, a sample-level uncertainty-based label selection algorithm is introduced to prioritize high-confidence samples for network updates, mitigating the impact of noisy annotations. Consistency learning is integrated to align the predictions of the student and teacher networks, further enhancing model robustness. Extensive experiments on two public datasets demonstrate the effectiveness of the proposed framework, showing significant improvements in segmentation performance. By fully exploiting the strengths of the Mean Teacher structure, the ALC framework effectively processes noisy labels, adapts to challenging scenarios, and achieves competitive results compared to state-of-the-art methods.
Abstract:Multimodal learning integrates complementary information from diverse modalities to enhance the decision-making process. However, the potential of multimodal collaboration remains under-exploited due to disparities in data quality and modality representation capabilities. To address this, we introduce DynCIM, a novel dynamic curriculum learning framework designed to quantify the inherent imbalances from both sample and modality perspectives. DynCIM employs a sample-level curriculum to dynamically assess each sample's difficulty according to prediction deviation, consistency, and stability, while a modality-level curriculum measures modality contributions from global and local. Furthermore, a gating-based dynamic fusion mechanism is introduced to adaptively adjust modality contributions, minimizing redundancy and optimizing fusion effectiveness. Extensive experiments on six multimodal benchmarking datasets, spanning both bimodal and trimodal scenarios, demonstrate that DynCIM consistently outperforms state-of-the-art methods. Our approach effectively mitigates modality and sample imbalances while enhancing adaptability and robustness in multimodal learning tasks. Our code is available at https://github.com/Raymond-Qiancx/DynCIM.
Abstract:Optimal transport has found widespread applications in signal processing and machine learning. Among its many equivalent formulations, optimal transport seeks to reconstruct a random variable/vector with a prescribed distribution at the destination while minimizing the expected distortion relative to a given random variable/vector at the source. However, in practice, certain constraints may render the optimal transport plan infeasible. In this work, we consider three types of constraints: rate constraints, dimension constraints, and channel constraints, motivated by perception-aware lossy compression, generative principal component analysis, and deep joint source-channel coding, respectively. Special attenion is given to the setting termed Gaussian Wasserstein optimal transport, where both the source and reconstruction variables are multivariate Gaussian, and the end-to-end distortion is measured by the mean squared error. We derive explicit results for the minimum achievable mean squared error under the three aforementioned constraints when the covariance matrices of the source and reconstruction variables commute.
Abstract:Binary Neural Network (BNN) converts full-precision weights and activations into their extreme 1-bit counterparts, making it particularly suitable for deployment on lightweight mobile devices. While binary neural networks are typically formulated as a constrained optimization problem and optimized in the binarized space, general neural networks are formulated as an unconstrained optimization problem and optimized in the continuous space. This paper introduces the Hyperbolic Binary Neural Network (HBNN) by leveraging the framework of hyperbolic geometry to optimize the constrained problem. Specifically, we transform the constrained problem in hyperbolic space into an unconstrained one in Euclidean space using the Riemannian exponential map. On the other hand, we also propose the Exponential Parametrization Cluster (EPC) method, which, compared to the Riemannian exponential map, shrinks the segment domain based on a diffeomorphism. This approach increases the probability of weight flips, thereby maximizing the information gain in BNNs. Experimental results on CIFAR10, CIFAR100, and ImageNet classification datasets with VGGsmall, ResNet18, and ResNet34 models illustrate the superior performance of our HBNN over state-of-the-art methods.
Abstract:Although significant progress has been made in enhancing visibility, retrieving texture details, and mitigating noise in Low-Light (LL) images, the challenge persists in applying current Low-Light Image Enhancement (LLIE) methods to real-world scenarios, primarily due to the diverse illumination conditions encountered. Furthermore, the quest for generating enhancements that are visually realistic and attractive remains an underexplored realm. In response to these challenges, we introduce a novel \textbf{LLIE} framework with the guidance of \textbf{G}enerative \textbf{P}erceptual \textbf{P}riors (\textbf{GPP-LLIE}) derived from vision-language models (VLMs). Specifically, we first propose a pipeline that guides VLMs to assess multiple visual attributes of the LL image and quantify the assessment to output the global and local perceptual priors. Subsequently, to incorporate these generative perceptual priors to benefit LLIE, we introduce a transformer-based backbone in the diffusion process, and develop a new layer normalization (\textit{\textbf{GPP-LN}}) and an attention mechanism (\textit{\textbf{LPP-Attn}}) guided by global and local perceptual priors. Extensive experiments demonstrate that our model outperforms current SOTA methods on paired LL datasets and exhibits superior generalization on real-world data. The code is released at \url{https://github.com/LowLevelAI/GPP-LLIE}.
Abstract:Directly probing deep tissue activities from body surfaces offers a noninvasive approach to monitoring essential physiological processes1-3. However, this method is technically challenged by rapid signal attenuation toward the body surface and confounding motion artifacts4-6 primarily due to excessive contact impedance and mechanical mismatch with conventional electrodes. Herein, by formulating and directly spray coating biocompatible two-dimensional nanosheet ink onto the human body under ambient conditions, we create microscopically conformal and adaptive van der Waals thin films (VDWTFs) that seamlessly merge with non-Euclidean, hairy, and dynamically evolving body surfaces. Unlike traditional deposition methods, which often struggle with conformality and adaptability while retaining high electronic performance, this gentle process enables the formation of high-performance VDWTFs directly on the body surface under bio-friendly conditions, making it ideal for biological applications. This results in low-impedance electrically functionalized body surfaces (EFBS), enabling highly robust monitoring of biopotential and bioimpedance modulations associated with deep-tissue activities, such as blood circulation, muscle movements, and brain activities. Compared to commercial solutions, our VDWTF-EFBS exhibits nearly two-orders of magnitude lower contact impedance and substantially reduces the extrinsic motion artifacts, enabling reliable extraction of bioelectrical signals from irregular surfaces, such as unshaved human scalps. This advancement defines a technology for continuous, noninvasive monitoring of deep-tissue activities during routine body movements.
Abstract:This paper describes the zero-shot spontaneous style TTS system for the ISCSLP 2024 Conversational Voice Clone Challenge (CoVoC). We propose a LLaMA-based codec language model with a delay pattern to achieve spontaneous style voice cloning. To improve speech intelligibility, we introduce the Classifier-Free Guidance (CFG) strategy in the language model to strengthen conditional guidance on token prediction. To generate high-quality utterances, we adopt effective data preprocessing operations and fine-tune our model with selected high-quality spontaneous speech data. The official evaluations in the CoVoC constrained track show that our system achieves the best speech naturalness MOS of 3.80 and obtains considerable speech quality and speaker similarity results.
Abstract:Large multimodal models (LMMs) have achieved impressive progress in vision-language understanding, yet they face limitations in real-world applications requiring complex reasoning over a large number of images. Existing benchmarks for multi-image question-answering are limited in scope, each question is paired with only up to 30 images, which does not fully capture the demands of large-scale retrieval tasks encountered in the real-world usages. To reduce these gaps, we introduce two document haystack benchmarks, dubbed DocHaystack and InfoHaystack, designed to evaluate LMM performance on large-scale visual document retrieval and understanding. Additionally, we propose V-RAG, a novel, vision-centric retrieval-augmented generation (RAG) framework that leverages a suite of multimodal vision encoders, each optimized for specific strengths, and a dedicated question-document relevance module. V-RAG sets a new standard, with a 9% and 11% improvement in Recall@1 on the challenging DocHaystack-1000 and InfoHaystack-1000 benchmarks, respectively, compared to the previous best baseline models. Additionally, integrating V-RAG with LMMs enables them to efficiently operate across thousands of images, yielding significant improvements on our DocHaystack and InfoHaystack benchmarks. Our code and datasets are available at https://github.com/Vision-CAIR/dochaystacks
Abstract:Probabilistic Reachable Set (PRS) plays a crucial role in many fields of autonomous systems, yet efficiently generating PRS remains a significant challenge. This paper presents a learning approach to generating 2-dimensional PRS for states in a dynamic system. Traditional methods such as Hamilton-Jacobi reachability analysis, Monte Carlo, and Gaussian process classification face significant computational challenges or require detailed dynamics information, limiting their applicability in realistic situations. Existing data-driven methods may lack accuracy. To overcome these limitations, we propose leveraging neural networks, commonly used in imitation learning and computer vision, to imitate expert methods to generate PRS approximations. We trained the neural networks using a multi-label, self-supervised learning approach. We selected the fine-tuned convex approximation method as the expert to create expert PRS. Additionally, we continued sampling from the distribution to obtain a diverse array of sample sets. Given a small sample set, the trained neural networks can replicate the PRS approximation generated by the expert method, while the generation speed is much faster.
Abstract:Models for trajectory prediction are an essential component of many advanced air mobility studies. These models help aircraft detect conflict and plan avoidance maneuvers, which is especially important in Unmanned Aircraft systems (UAS) landing management due to the congested airspace near vertiports. In this paper, we propose a landing trajectory prediction model for UAS based on Generative Adversarial Network (GAN). The GAN is a prestigious neural network that has been developed for many years. In previous research, GAN has achieved many state-of-the-art results in many generation tasks. The GAN consists of one neural network generator and a neural network discriminator. Because of the learning capacity of the neural networks, the generator is capable to understand the features of the sample trajectory. The generator takes the previous trajectory as input and outputs some random status of a flight. According to the results of the experiences, the proposed model can output more accurate predictions than the baseline method(GMR) in various datasets. To evaluate the proposed model, we also create a real UAV landing dataset that includes more than 2600 trajectories of drone control manually by real pilots.