Abstract:Generating sound effects for product-level videos, where only a small amount of labeled data is available for diverse scenes, requires the production of high-quality sounds in few-shot settings. To tackle the challenge of limited labeled data in real-world scenes, we introduce YingSound, a foundation model designed for video-guided sound generation that supports high-quality audio generation in few-shot settings. Specifically, YingSound consists of two major modules. The first module uses a conditional flow matching transformer to achieve effective semantic alignment in sound generation across audio and visual modalities. This module aims to build a learnable audio-visual aggregator (AVA) that integrates high-resolution visual features with corresponding audio features at multiple stages. The second module is developed with a proposed multi-modal visual-audio chain-of-thought (CoT) approach to generate finer sound effects in few-shot settings. Finally, an industry-standard video-to-audio (V2A) dataset that encompasses various real-world scenarios is presented. We show that YingSound effectively generates high-quality synchronized sounds across diverse conditional inputs through automated evaluations and human studies. Project Page: \url{https://giantailab.github.io/yingsound/}
Abstract:Zero-shot voice conversion (VC) aims to convert the original speaker's timbre to any target speaker while keeping the linguistic content. Current mainstream zero-shot voice conversion approaches depend on pre-trained recognition models to disentangle linguistic content and speaker representation. This results in a timbre residue within the decoupled linguistic content and inadequacies in speaker representation modeling. In this study, we propose CoDiff-VC, an end-to-end framework for zero-shot voice conversion that integrates a speech codec and a diffusion model to produce high-fidelity waveforms. Our approach involves employing a single-codebook codec to separate linguistic content from the source speech. To enhance content disentanglement, we introduce Mix-Style layer normalization (MSLN) to perturb the original timbre. Additionally, we incorporate a multi-scale speaker timbre modeling approach to ensure timbre consistency and improve voice detail similarity. To improve speech quality and speaker similarity, we introduce dual classifier-free guidance, providing both content and timbre guidance during the generation process. Objective and subjective experiments affirm that CoDiff-VC significantly improves speaker similarity, generating natural and higher-quality speech.
Abstract:This paper presents the NPU-HWC system submitted to the ISCSLP 2024 Inspirational and Convincing Audio Generation Challenge 2024 (ICAGC). Our system consists of two modules: a speech generator for Track 1 and a background audio generator for Track 2. In Track 1, we employ Single-Codec to tokenize the speech into discrete tokens and use a language-model-based approach to achieve zero-shot speaking style cloning. The Single-Codec effectively decouples timbre and speaking style at the token level, reducing the acoustic modeling burden on the autoregressive language model. Additionally, we use DSPGAN to upsample 16 kHz mel-spectrograms to high-fidelity 48 kHz waveforms. In Track 2, we propose a background audio generator based on large language models (LLMs). This system produces scene-appropriate accompaniment descriptions, synthesizes background audio with Tango 2, and integrates it with the speech generated by our Track 1 system. Our submission achieves the second place and the first place in Track 1 and Track 2 respectively.
Abstract:Zero-shot voice conversion (VC) aims to transform source speech into arbitrary unseen target voice while keeping the linguistic content unchanged. Recent VC methods have made significant progress, but semantic losses in the decoupling process as well as training-inference mismatch still hinder conversion performance. In this paper, we propose Vec-Tok-VC+, a novel prompt-based zero-shot VC model improved from Vec-Tok Codec, achieving voice conversion given only a 3s target speaker prompt. We design a residual-enhanced K-Means decoupler to enhance the semantic content extraction with a two-layer clustering process. Besides, we employ teacher-guided refinement to simulate the conversion process to eliminate the training-inference mismatch, forming a dual-mode training strategy. Furthermore, we design a multi-codebook progressive loss function to constrain the layer-wise output of the model from coarse to fine to improve speaker similarity and content accuracy. Objective and subjective evaluations demonstrate that Vec-Tok-VC+ outperforms the strong baselines in naturalness, intelligibility, and speaker similarity.
Abstract:Recent advances in text-to-speech have significantly improved the expressiveness of synthetic speech. However, a major challenge remains in generating speech that captures the diverse styles exhibited by professional narrators in audiobooks without relying on manually labeled data or reference speech. To address this problem, we propose a text-aware and context-aware(TACA) style modeling approach for expressive audiobook speech synthesis. We first establish a text-aware style space to cover diverse styles via contrastive learning with the supervision of the speech style. Meanwhile, we adopt a context encoder to incorporate cross-sentence information and the style embedding obtained from text. Finally, we introduce the context encoder to two typical TTS models, VITS-based TTS and language model-based TTS. Experimental results demonstrate that our proposed approach can effectively capture diverse styles and coherent prosody, and consequently improves naturalness and expressiveness in audiobook speech synthesis.
Abstract:The multi-codebook speech codec enables the application of large language models (LLM) in TTS but bottlenecks efficiency and robustness due to multi-sequence prediction. To avoid this obstacle, we propose Single-Codec, a single-codebook single-sequence codec, which employs a disentangled VQ-VAE to decouple speech into a time-invariant embedding and a phonetically-rich discrete sequence. Furthermore, the encoder is enhanced with 1) contextual modeling with a BLSTM module to exploit the temporal information, 2) a hybrid sampling module to alleviate distortion from upsampling and downsampling, and 3) a resampling module to encourage discrete units to carry more phonetic information. Compared with multi-codebook codecs, e.g., EnCodec and TiCodec, Single-Codec demonstrates higher reconstruction quality with a lower bandwidth of only 304bps. The effectiveness of Single-Code is further validated by LLM-TTS experiments, showing improved naturalness and intelligibility.
Abstract:Accent transfer aims to transfer an accent from a source speaker to synthetic speech in the target speaker's voice. The main challenge is how to effectively disentangle speaker timbre and accent which are entangled in speech. This paper presents a VITS-based end-to-end accent transfer model named Accent-VITS.Based on the main structure of VITS, Accent-VITS makes substantial improvements to enable effective and stable accent transfer.We leverage a hierarchical CVAE structure to model accent pronunciation information and acoustic features, respectively, using bottleneck features and mel spectrums as constraints.Moreover, the text-to-wave mapping in VITS is decomposed into text-to-accent and accent-to-wave mappings in Accent-VITS. In this way, the disentanglement of accent and speaker timbre becomes be more stable and effective.Experiments on multi-accent and Mandarin datasets show that Accent-VITS achieves higher speaker similarity, accent similarity and speech naturalness as compared with a strong baseline.
Abstract:Language models (LMs) have shown superior performances in various speech generation tasks recently, demonstrating their powerful ability for semantic context modeling. Given the intrinsic similarity between speech generation and speech enhancement, harnessing semantic information holds potential advantages for speech enhancement tasks. In light of this, we propose SELM, a novel paradigm for speech enhancement, which integrates discrete tokens and leverages language models. SELM comprises three stages: encoding, modeling, and decoding. We transform continuous waveform signals into discrete tokens using pre-trained self-supervised learning (SSL) models and a k-means tokenizer. Language models then capture comprehensive contextual information within these tokens. Finally, a detokenizer and HiFi-GAN restore them into enhanced speech. Experimental results demonstrate that SELM achieves comparable performance in objective metrics alongside superior results in subjective perception. Our demos are available https://honee-w.github.io/SELM/.
Abstract:Spontaneous speaking style exhibits notable differences from other speaking styles due to various spontaneous phenomena (e.g., filled pauses, prolongation) and substantial prosody variation (e.g., diverse pitch and duration variation, occasional non-verbal speech like smile), posing challenges to modeling and prediction of spontaneous style. Moreover, the limitation of high-quality spontaneous data constrains spontaneous speech generation for speakers without spontaneous data. To address these problems, we propose SponTTS, a two-stage approach based on bottleneck (BN) features to model and transfer spontaneous style for TTS. In the first stage, we adopt a Conditional Variational Autoencoder (CVAE) to capture spontaneous prosody from a BN feature and involve the spontaneous phenomena by the constraint of spontaneous phenomena embedding prediction loss. Besides, we introduce a flow-based predictor to predict a latent spontaneous style representation from the text, which enriches the prosody and context-specific spontaneous phenomena during inference. In the second stage, we adopt a VITS-like module to transfer the spontaneous style learned in the first stage to target speakers. Experiments demonstrate that SponTTS is effective in modeling spontaneous style and transferring the style to the target speakers, generating spontaneous speech with high naturalness, expressiveness, and speaker similarity. The zero-shot spontaneous style TTS test further verifies the generalization and robustness of SponTTS in generating spontaneous speech for unseen speakers.
Abstract:This paper aims to build an expressive TTS system for multi-speakers, synthesizing a target speaker's speech with multiple styles and emotions. To this end, we propose a novel contrastive learning-based TTS approach to transfer style and emotion across speakers. Specifically, we construct positive-negative sample pairs at both utterance and category (such as emotion-happy or style-poet or speaker A) levels and leverage contrastive learning to better extract disentangled style, emotion, and speaker representations from speech. Furthermore, we introduce a semi-supervised training strategy to the proposed approach to effectively leverage multi-domain data, including style-labeled data, emotion-labeled data, and unlabeled data. We integrate the learned representations into an improved VITS model, enabling it to synthesize expressive speech with diverse styles and emotions for a target speaker. Experiments on multi-domain data demonstrate the good design of our model.