Abstract:Recently, diffusion models have achieved great success in mono-channel audio generation. However, when it comes to stereo audio generation, the soundscapes often have a complex scene of multiple objects and directions. Controlling stereo audio with spatial contexts remains challenging due to high data costs and unstable generative models. To the best of our knowledge, this work represents the first attempt to address these issues. We first construct a large-scale, simulation-based, and GPT-assisted dataset, BEWO-1M, with abundant soundscapes and descriptions even including moving and multiple sources. Beyond text modality, we have also acquired a set of images and rationally paired stereo audios through retrieval to advance multimodal generation. Existing audio generation models tend to generate rather random and indistinct spatial audio. To provide accurate guidance for latent diffusion models, we introduce the SpatialSonic model utilizing spatial-aware encoders and azimuth state matrices to reveal reasonable spatial guidance. By leveraging spatial guidance, our unified model not only achieves the objective of generating immersive and controllable spatial audio from text and image but also enables interactive audio generation during inference. Finally, under fair settings, we conduct subjective and objective evaluations on simulated and real-world data to compare our approach with prevailing methods. The results demonstrate the effectiveness of our method, highlighting its capability to generate spatial audio that adheres to physical rules.
Abstract:Recent advancements in audio generation have been significantly propelled by the capabilities of Large Language Models (LLMs). The existing research on audio LLM has primarily focused on enhancing the architecture and scale of audio language models, as well as leveraging larger datasets, and generally, acoustic codecs, such as EnCodec, are used for audio tokenization. However, these codecs were originally designed for audio compression, which may lead to suboptimal performance in the context of audio LLM. Our research aims to address the shortcomings of current audio LLM codecs, particularly their challenges in maintaining semantic integrity in generated audio. For instance, existing methods like VALL-E, which condition acoustic token generation on text transcriptions, often suffer from content inaccuracies and elevated word error rates (WER) due to semantic misinterpretations of acoustic tokens, resulting in word skipping and errors. To overcome these issues, we propose a straightforward yet effective approach called X-Codec. X-Codec incorporates semantic features from a pre-trained semantic encoder before the Residual Vector Quantization (RVQ) stage and introduces a semantic reconstruction loss after RVQ. By enhancing the semantic ability of the codec, X-Codec significantly reduces WER in speech synthesis tasks and extends these benefits to non-speech applications, including music and sound generation. Our experiments in text-to-speech, music continuation, and text-to-sound tasks demonstrate that integrating semantic information substantially improves the overall performance of language models in audio generation. Our code and demo are available (Demo: https://x-codec-audio.github.io Code: https://github.com/zhenye234/xcodec)
Abstract:Large vision-language models (LVLMs) have significantly improved multimodal reasoning tasks, such as visual question answering and image captioning. These models embed multimodal facts within their parameters, rather than relying on external knowledge bases to store factual information explicitly. However, the content discerned by LVLMs may deviate from actual facts due to inherent bias or incorrect inference. To address this issue, we introduce MFC-Bench, a rigorous and comprehensive benchmark designed to evaluate the factual accuracy of LVLMs across three tasks: Manipulation, Out-of-Context, and Veracity Classification. Through our evaluation on MFC-Bench, we benchmarked 12 diverse and representative LVLMs, uncovering that current models still fall short in multimodal fact-checking and demonstrate insensitivity to various forms of manipulated content. We hope that MFC-Bench could raise attention to the trustworthy artificial intelligence potentially assisted by LVLMs in the future. The MFC-Bench and accompanying resources are publicly accessible at https://github.com/wskbest/MFC-Bench, contributing to ongoing research in the multimodal fact-checking field.
Abstract:Singing Accompaniment Generation (SAG), which generates instrumental music to accompany input vocals, is crucial to developing human-AI symbiotic art creation systems. The state-of-the-art method, SingSong, utilizes a multi-stage autoregressive (AR) model for SAG, however, this method is extremely slow as it generates semantic and acoustic tokens recursively, and this makes it impossible for real-time applications. In this paper, we aim to develop a Fast SAG method that can create high-quality and coherent accompaniments. A non-AR diffusion-based framework is developed, which by carefully designing the conditions inferred from the vocal signals, generates the Mel spectrogram of the target accompaniment directly. With diffusion and Mel spectrogram modeling, the proposed method significantly simplifies the AR token-based SingSong framework, and largely accelerates the generation. We also design semantic projection, prior projection blocks as well as a set of loss functions, to ensure the generated accompaniment has semantic and rhythm coherence with the vocal signal. By intensive experimental studies, we demonstrate that the proposed method can generate better samples than SingSong, and accelerate the generation by at least 30 times. Audio samples and code are available at https://fastsag.github.io/.
Abstract:Recent progress in large-scale zero-shot speech synthesis has been significantly advanced by language models and diffusion models. However, the generation process of both methods is slow and computationally intensive. Efficient speech synthesis using a lower computing budget to achieve quality on par with previous work remains a significant challenge. In this paper, we present FlashSpeech, a large-scale zero-shot speech synthesis system with approximately 5\% of the inference time compared with previous work. FlashSpeech is built on the latent consistency model and applies a novel adversarial consistency training approach that can train from scratch without the need for a pre-trained diffusion model as the teacher. Furthermore, a new prosody generator module enhances the diversity of prosody, making the rhythm of the speech sound more natural. The generation processes of FlashSpeech can be achieved efficiently with one or two sampling steps while maintaining high audio quality and high similarity to the audio prompt for zero-shot speech generation. Our experimental results demonstrate the superior performance of FlashSpeech. Notably, FlashSpeech can be about 20 times faster than other zero-shot speech synthesis systems while maintaining comparable performance in terms of voice quality and similarity. Furthermore, FlashSpeech demonstrates its versatility by efficiently performing tasks like voice conversion, speech editing, and diverse speech sampling. Audio samples can be found in https://flashspeech.github.io/.
Abstract:The diffusion-based Singing Voice Conversion (SVC) methods have achieved remarkable performances, producing natural audios with high similarity to the target timbre. However, the iterative sampling process results in slow inference speed, and acceleration thus becomes crucial. In this paper, we propose CoMoSVC, a consistency model-based SVC method, which aims to achieve both high-quality generation and high-speed sampling. A diffusion-based teacher model is first specially designed for SVC, and a student model is further distilled under self-consistency properties to achieve one-step sampling. Experiments on a single NVIDIA GTX4090 GPU reveal that although CoMoSVC has a significantly faster inference speed than the state-of-the-art (SOTA) diffusion-based SVC system, it still achieves comparable or superior conversion performance based on both subjective and objective metrics. Audio samples and codes are available at https://comosvc.github.io/.
Abstract:Developing digital sound synthesizers is crucial to the music industry as it provides a low-cost way to produce high-quality sounds with rich timbres. Existing traditional synthesizers often require substantial expertise to determine the overall framework of a synthesizer and the parameters of submodules. Since expert knowledge is hard to acquire, it hinders the flexibility to quickly design and tune digital synthesizers for diverse sounds. In this paper, we propose ``NAS-FM'', which adopts neural architecture search (NAS) to build a differentiable frequency modulation (FM) synthesizer. Tunable synthesizers with interpretable controls can be developed automatically from sounds without any prior expert knowledge and manual operating costs. In detail, we train a supernet with a specifically designed search space, including predicting the envelopes of carriers and modulators with different frequency ratios. An evolutionary search algorithm with adaptive oscillator size is then developed to find the optimal relationship between oscillators and the frequency ratio of FM. Extensive experiments on recordings of different instrument sounds show that our algorithm can build a synthesizer fully automatically, achieving better results than handcrafted synthesizers. Audio samples are available at https://nas-fm.github.io/.
Abstract:Denoising diffusion probabilistic models (DDPMs) have shown promising performance for speech synthesis. However, a large number of iterative steps are required to achieve high sample quality, which restricts the inference speed. Maintaining sample quality while increasing sampling speed has become a challenging task. In this paper, we propose a "Co"nsistency "Mo"del-based "Speech" synthesis method, CoMoSpeech, which achieve speech synthesis through a single diffusion sampling step while achieving high audio quality. The consistency constraint is applied to distill a consistency model from a well-designed diffusion-based teacher model, which ultimately yields superior performances in the distilled CoMoSpeech. Our experiments show that by generating audio recordings by a single sampling step, the CoMoSpeech achieves an inference speed more than 150 times faster than real-time on a single NVIDIA A100 GPU, which is comparable to FastSpeech2, making diffusion-sampling based speech synthesis truly practical. Meanwhile, objective and subjective evaluations on text-to-speech and singing voice synthesis show that the proposed teacher models yield the best audio quality, and the one-step sampling based CoMoSpeech achieves the best inference speed with better or comparable audio quality to other conventional multi-step diffusion model baselines. Audio samples are available at https://comospeech.github.io/.
Abstract:Registration is a fundamental but critical task in point cloud processing, which usually depends on finding element correspondence from two point clouds. However, the finding of reliable correspondence relies on establishing a robust and discriminative description of elements and the correct matching of corresponding elements. In this letter, we develop a coarse-to-fine registration strategy, which utilizes rotation-invariant features and a new weighted graph matching method for iteratively finding correspondence. In the graph matching method, the similarity of nodes and edges in Euclidean and feature space are formulated to construct the optimization function. The proposed strategy is evaluated using two benchmark datasets and compared with several state-of-the-art methods. Regarding the experimental results, our proposed method can achieve a fine registration with rotation errors of less than 0.2 degrees and translation errors of less than 0.1m.
Abstract:In autonomous driving community, numerous benchmarks have been established to assist the tasks of 3D/2D object detection, stereo vision, semantic/instance segmentation. However, the more meaningful dynamic evolution of the surrounding objects of ego-vehicle is rarely exploited, and lacks a large-scale dataset platform. To address this, we introduce BLVD, a large-scale 5D semantics benchmark which does not concentrate on the static detection or semantic/instance segmentation tasks tackled adequately before. Instead, BLVD aims to provide a platform for the tasks of dynamic 4D (3D+temporal) tracking, 5D (4D+interactive) interactive event recognition and intention prediction. This benchmark will boost the deeper understanding of traffic scenes than ever before. We totally yield 249,129 3D annotations, 4,902 independent individuals for tracking with the length of overall 214,922 points, 6,004 valid fragments for 5D interactive event recognition, and 4,900 individuals for 5D intention prediction. These tasks are contained in four kinds of scenarios depending on the object density (low and high) and light conditions (daytime and nighttime). The benchmark can be downloaded from our project site https://github.com/VCCIV/BLVD/.