Abstract:Despite the extensive research on training generative adversarial networks (GANs) with limited training data, learning to generate images from long-tailed training distributions remains fairly unexplored. In the presence of imbalanced multi-class training data, GANs tend to favor classes with more samples, leading to the generation of low-quality and less diverse samples in tail classes. In this study, we aim to improve the training of class-conditional GANs with long-tailed data. We propose a straightforward yet effective method for knowledge sharing, allowing tail classes to borrow from the rich information from classes with more abundant training data. More concretely, we propose modifications to existing class-conditional GAN architectures to ensure that the lower-resolution layers of the generator are trained entirely unconditionally while reserving class-conditional generation for the higher-resolution layers. Experiments on several long-tail benchmarks and GAN architectures demonstrate a significant improvement over existing methods in both the diversity and fidelity of the generated images. The code is available at https://github.com/khorrams/utlo.
Abstract:We propose a methodology that systematically applies deep explanation algorithms on a dataset-wide basis, to compare different types of visual recognition backbones, such as convolutional networks (CNNs), global attention networks, and local attention networks. Examination of both qualitative visualizations and quantitative statistics across the dataset helps us to gain intuitions that are not just anecdotal, but are supported by the statistics computed on the entire dataset. Specifically, we propose two methods. The first one, sub-explanation counting, systematically searches for minimally-sufficient explanations of all images and count the amount of sub-explanations for each network. The second one, called cross-testing, computes salient regions using one network and then evaluates the performance by only showing these regions as an image to other networks. Through a combination of qualitative insights and quantitative statistics, we illustrate that 1) there are significant differences between the salient features of CNNs and attention models; 2) the occlusion-robustness in local attention models and global attention models may come from different decision-making mechanisms.
Abstract:Cross-speaker emotion transfer speech synthesis aims to synthesize emotional speech for a target speaker by transferring the emotion from reference speech recorded by another (source) speaker. In this task, extracting speaker-independent emotion embedding from reference speech plays an important role. However, the emotional information conveyed by such emotion embedding tends to be weakened in the process to squeeze out the source speaker's timbre information. In response to this problem, a prosody compensation module (PCM) is proposed in this paper to compensate for the emotional information loss. Specifically, the PCM tries to obtain speaker-independent emotional information from the intermediate feature of a pre-trained ASR model. To this end, a prosody compensation encoder with global context (GC) blocks is introduced to obtain global emotional information from the ASR model's intermediate feature. Experiments demonstrate that the proposed PCM can effectively compensate the emotion embedding for the emotional information loss, and meanwhile maintain the timbre of the target speaker. Comparisons with state-of-the-art models show that our proposed method presents obvious superiority on the cross-speaker emotion transfer task.
Abstract:Given a long list of anomaly detection algorithms developed in the last few decades, how do they perform with regard to (i) varying levels of supervision, (ii) different types of anomalies, and (iii) noisy and corrupted data? In this work, we answer these key questions by conducting (to our best knowledge) the most comprehensive anomaly detection benchmark with 30 algorithms on 55 benchmark datasets, named ADBench. Our extensive experiments (93,654 in total) identify meaningful insights into the role of supervision and anomaly types, and unlock future directions for researchers in algorithm selection and design. With ADBench, researchers can easily conduct comprehensive and fair evaluations for newly proposed methods on the datasets (including our contributed ones from natural language and computer vision domains) against the existing baselines. To foster accessibility and reproducibility, we fully open-source ADBench and the corresponding results.