Abstract:Recent advances in text-to-speech have significantly improved the expressiveness of synthetic speech. However, a major challenge remains in generating speech that captures the diverse styles exhibited by professional narrators in audiobooks without relying on manually labeled data or reference speech. To address this problem, we propose a text-aware and context-aware(TACA) style modeling approach for expressive audiobook speech synthesis. We first establish a text-aware style space to cover diverse styles via contrastive learning with the supervision of the speech style. Meanwhile, we adopt a context encoder to incorporate cross-sentence information and the style embedding obtained from text. Finally, we introduce the context encoder to two typical TTS models, VITS-based TTS and language model-based TTS. Experimental results demonstrate that our proposed approach can effectively capture diverse styles and coherent prosody, and consequently improves naturalness and expressiveness in audiobook speech synthesis.
Abstract:In this paper, we propose a new influence spread model, namely, Complementary\&Competitive Independent Cascade (C$^2$IC) model. C$^2$IC model generalizes three well known influence model, i.e., influence boosting (IB) model, campaign oblivious (CO)IC model and the IC-N (IC model with negative opinions) model. This is the first model that considers both complementary and competitive influence spread comprehensively under multi-agent environment. Correspondingly, we propose the Complementary\&Competitive influence maximization (C$^2$IM) problem. Given an ally seed set and a rival seed set, the C$^2$IM problem aims to select a set of assistant nodes that can boost the ally spread and prevent the rival spread concurrently. We show the problem is NP-hard and can generalize the influence boosting problem and the influence blocking problem. With classifying the different cascade priorities into 4 cases by the monotonicity and submodularity (M\&S) holding conditions, we design 4 algorithms respectively, with theoretical approximation bounds provided. We conduct extensive experiments on real social networks and the experimental results demonstrate the effectiveness of the proposed algorithms. We hope this work can inspire abundant future exploration for constructing more generalized influence models that help streamline the works of this area.