for the ALFA study
Abstract:This paper addresses the challenges of accurately enumerating and describing scenes and the labor-intensive process required to replicate acoustic environments using non-generative methods. We introduce the prompt-based Dynamic Generative Sce-ne-based Noise Addition method (DGSNA), which innovatively combines the Dynamic Generation of Scene Information (DGSI) with Scene-based Noise Addition for Audio (SNAA). Employing generative chat models structured within the Back-ground-Examples-Task (BET) prompt framework, DGSI com-ponent facilitates the dynamic synthesis of tailored Scene Infor-mation (SI) for specific acoustic environments. Additionally, the SNAA component leverages Room Impulse Response (RIR) fil-ters and Text-To-Audio (TTA) systems to generate realistic, scene-based noise that can be adapted for both indoor and out-door environments. Through comprehensive experiments, the adaptability of DGSNA across different generative chat models was demonstrated. The results, assessed through both objective and subjective evaluations, show that DGSNA provides robust performance in dynamically generating precise SI and effectively enhancing scene-based noise addition capabilities, thus offering significant improvements over traditional methods in acoustic scene simulation. Our implementation and demos are available at https://dgsna.github.io.
Abstract:To address the issues of insufficient robustness, unstable features, and data noise interference in existing network attack detection and identification models, this paper proposes an attack traffic detection and identification method based on temporal spectrum. First, traffic data is segmented by a sliding window to construct a feature sequence and a corresponding label sequence for network traffic. Next, the proposed spectral label generation methods, SSPE and COAP, are applied to transform the label sequence into spectral labels and the feature sequence into temporal features. Spectral labels and temporal features are used to capture and represent behavioral patterns of attacks. Finally, the constructed temporal features and spectral labels are used to train models, which subsequently detects and identifies network attack behaviors. Experimental results demonstrate that compared to traditional methods, models trained with the SSPE or COAP method improve identification accuracy by 10%, and exhibit strong robustness, particularly in noisy environments.
Abstract:Consider an integrated sensing and communication (ISAC) system where a base station (BS) employs a full-duplex radio to simultaneously serve multiple users and detect a target. The detection performance of the BS may be compromised by self-interference (SI) leakage. This paper investigates the feasibility of SI cancellation (SIC) through the application of symbol-level precoding (SLP). We first derive the target detection probability in the presence of the SI. We then formulate an SLP-based SIC problem, which optimizes the target detection probability while satisfying the quality of service requirements of all users. The formulated problem is a nonconvex fractional programming (FP) problem with a large number of equality and inequality constraints. We propose a penalty-based block coordinate descent (BCD) algorithm for solving the formulated problem, which allows for efficient closed-form updates of each block of variables at each iteration. Finally, numerical simulation results are presented to showcase the enhanced detection performance of the proposed SIC approach.
Abstract:Large-scale text-to-speech (TTS) models have made significant progress recently.However, they still fall short in the generation of Chinese dialectal speech. Toaddress this, we propose Bailing-TTS, a family of large-scale TTS models capable of generating high-quality Chinese dialectal speech. Bailing-TTS serves as a foundation model for Chinese dialectal speech generation. First, continual semi-supervised learning is proposed to facilitate the alignment of text tokens and speech tokens. Second, the Chinese dialectal representation learning is developed using a specific transformer architecture and multi-stage training processes. With the proposed design of novel network architecture and corresponding strategy, Bailing-TTS is able to generate Chinese dialectal speech from text effectively and efficiently. Experiments demonstrate that Bailing-TTS generates Chinese dialectal speech towards human-like spontaneous representation. Readers are encouraged to listen to demos at \url{https://c9412600.github.io/bltts_tech_report/index.html}.
Abstract:We introduce NeuroSA, a neuromorphic architecture specifically designed to ensure asymptotic convergence to the ground state of an Ising problem using an annealing process that is governed by the physics of quantum mechanical tunneling using Fowler-Nordheim (FN). The core component of NeuroSA consists of a pair of asynchronous ON-OFF neurons, which effectively map classical simulated annealing (SA) dynamics onto a network of integrate-and-fire (IF) neurons. The threshold of each ON-OFF neuron pair is adaptively adjusted by an FN annealer which replicates the optimal escape mechanism and convergence of SA, particularly at low temperatures. To validate the effectiveness of our neuromorphic Ising machine, we systematically solved various benchmark MAX-CUT combinatorial optimization problems. Across multiple runs, NeuroSA consistently generates solutions that approach the state-of-the-art level with high accuracy (greater than 99%), and without any graph-specific hyperparameter tuning. For practical illustration, we present results from an implementation of NeuroSA on the SpiNNaker2 platform, highlighting the feasibility of mapping our proposed architecture onto a standard neuromorphic accelerator platform.
Abstract:Learning-in-memory (LIM) is a recently proposed paradigm to overcome fundamental memory bottlenecks in training machine learning systems. While compute-in-memory (CIM) approaches can address the so-called memory-wall (i.e. energy dissipated due to repeated memory read access) they are agnostic to the energy dissipated due to repeated memory writes at the precision required for training (the update-wall), and they don't account for the energy dissipated when transferring information between short-term and long-term memories (the consolidation-wall). The LIM paradigm proposes that these bottlenecks, too, can be overcome if the energy barrier of physical memories is adaptively modulated such that the dynamics of memory updates and consolidation match the Lyapunov dynamics of gradient-descent training of an AI model. In this paper, we derive new theoretical lower bounds on energy dissipation when training AI systems using different LIM approaches. The analysis presented here is model-agnostic and highlights the trade-off between energy efficiency and the speed of training. The resulting non-equilibrium energy-efficiency bounds have a similar flavor as that of Landauer's energy-dissipation bounds. We also extend these limits by taking into account the number of floating-point operations (FLOPs) used for training, the size of the AI model, and the precision of the training parameters. Our projections suggest that the energy-dissipation lower-bound to train a brain scale AI system (comprising of $10^{15}$ parameters) using LIM is $10^8 \sim 10^9$ Joules, which is on the same magnitude the Landauer's adiabatic lower-bound and $6$ to $7$ orders of magnitude lower than the projections obtained using state-of-the-art AI accelerator hardware lower-bounds.
Abstract:We investigate the quantitative performance of affine-equivariant estimators for robust mean estimation. As a natural stability requirement, the construction of such affine-equivariant estimators has been extensively studied in the statistics literature. We quantitatively evaluate these estimators under two outlier models which have been the subject of much recent work: the heavy-tailed and adversarial corruption settings. We establish lower bounds which show that affine-equivariance induces a strict degradation in recovery error with quantitative rates degrading by a factor of $\sqrt{d}$ in both settings. We find that classical estimators such as the Tukey median (Tukey '75) and Stahel-Donoho estimator (Stahel '81 and Donoho '82) are either quantitatively sub-optimal even within the class of affine-equivariant estimators or lack any quantitative guarantees. On the other hand, recent estimators with strong quantitative guarantees are not affine-equivariant or require additional distributional assumptions to achieve it. We remedy this by constructing a new affine-equivariant estimator which nearly matches our lower bound. Our estimator is based on a novel notion of a high-dimensional median which may be of independent interest. Notably, our results are applicable more broadly to any estimator whose performance is evaluated in the Mahalanobis norm which, for affine-equivariant estimators, corresponds to an evaluation in Euclidean norm on isotropic distributions.
Abstract:Cardiac Magnetic Resonance imaging (CMR) is the gold standard for assessing cardiac function. Segmenting the left ventricle (LV), right ventricle (RV), and LV myocardium (MYO) in CMR images is crucial but time-consuming. Deep learning-based segmentation methods have emerged as effective tools for automating this process. However, CMR images present additional challenges due to irregular and varying heart shapes, particularly in basal and apical slices. In this study, we propose a classifier-guided two-stage network with an all-slice fusion transformer to enhance CMR segmentation accuracy, particularly in basal and apical slices. Our method was evaluated on extensive clinical datasets and demonstrated better performance in terms of Dice score compared to previous CNN-based and transformer-based models. Moreover, our method produces visually appealing segmentation shapes resembling human annotations and avoids common issues like holes or fragments in other models' segmentations.
Abstract:The interpretability of model has become one of the obstacles to its wide application in the high-stake fields. The usual way to obtain interpretability is to build a black-box first and then explain it using the post-hoc methods. However, the explanations provided by the post-hoc method are not always reliable. Instead, we design an intrinsically interpretable model based on RRL(Rule Representation Learner) for the Lending Club dataset. Specifically, features can be divided into three categories according to their characteristics of themselves and build three sub-networks respectively, each of which is similar to a neural network with a single hidden layer but can be equivalently converted into a set of rules. During the training, we learned tricks from previous research to effectively train binary weights. Finally, our model is compared with the tree-based model. The results show that our model is much better than the interpretable decision tree in performance and close to other black-box, which is of practical significance to both financial institutions and borrowers. More importantly, our model is used to test the correctness of the explanations generated by the post-hoc method, the results show that the post-hoc method is not always reliable.
Abstract:Contrastive learning is widely used for sentence representation learning. Despite this prevalence, most studies have focused exclusively on English and few concern domain adaptation for domain-specific downstream tasks, especially for low-resource languages like Japanese, which are characterized by insufficient target domain data and the lack of a proper training strategy. To overcome this, we propose a novel Japanese sentence representation framework, JCSE (derived from ``Contrastive learning of Sentence Embeddings for Japanese''), that creates training data by generating sentences and synthesizing them with sentences available in a target domain. Specifically, a pre-trained data generator is finetuned to a target domain using our collected corpus. It is then used to generate contradictory sentence pairs that are used in contrastive learning for adapting a Japanese language model to a specific task in the target domain. Another problem of Japanese sentence representation learning is the difficulty of evaluating existing embedding methods due to the lack of benchmark datasets. Thus, we establish a comprehensive Japanese Semantic Textual Similarity (STS) benchmark on which various embedding models are evaluated. Based on this benchmark result, multiple embedding methods are chosen and compared with JCSE on two domain-specific tasks, STS in a clinical domain and information retrieval in an educational domain. The results show that JCSE achieves significant performance improvement surpassing direct transfer and other training strategies. This empirically demonstrates JCSE's effectiveness and practicability for downstream tasks of a low-resource language.