Abstract:The insufficient supervision limit the performance of the deep supervised models for brain disease diagnosis. It is important to develop a learning framework that can capture more information in limited data and insufficient supervision. To address these issues at some extend, we propose a multi-stage graph learning framework which incorporates 1) pretrain stage : self-supervised graph learning on insufficient supervision of the fmri data 2) fine-tune stage : supervised graph learning for brain disorder diagnosis. Experiment results on three datasets, Autism Brain Imaging Data Exchange ABIDE I, ABIDE II and ADHD with AAL1,demonstrating the superiority and generalizability of the proposed framework compared to the state of art of models.(ranging from 0.7330 to 0.9321,0.7209 to 0.9021,0.6338 to 0.6699)
Abstract:There is a gap in the understanding of occluded objects in existing large-scale visual language multi-modal models. Current state-of-the-art multi-modal models fail to provide satisfactory results in describing occluded objects through universal visual encoders and supervised learning strategies. Therefore, we introduce a multi-modal large language framework and corresponding self-supervised learning strategy with support of 3D generation. We start our experiments comparing with the state-of-the-art models in the evaluation of a large-scale dataset SOMVideo [18]. The initial results demonstrate the improvement of 16.92% in comparison with the state-of-the-art VLM models.
Abstract:There is a gap in the understanding of occluded objects in existing large-scale visual language multi-modal models. Current state-of-the-art multimodal models fail to provide satisfactory results in describing occluded objects for visual-language multimodal models through universal visual encoders. Another challenge is the limited number of datasets containing image-text pairs with a large number of occluded objects. Therefore, we introduce a novel multimodal model that applies a newly designed visual encoder to understand occluded objects in RGB images. We also introduce a large-scale visual-language pair dataset for training large-scale visual-language multimodal models and understanding occluded objects. We start our experiments comparing with the state-of-the-art models.
Abstract:Adaptation methods are developed to adapt depth foundation models to endoscopic depth estimation recently. However, such approaches typically under-perform training since they limit the parameter search to a low-rank subspace and alter the training dynamics. Therefore, we propose a full-parameter and parameter-efficient learning framework for endoscopic depth estimation. At the first stage, the subspace of attention, convolution and multi-layer perception are adapted simultaneously within different sub-spaces. At the second stage, a memory-efficient optimization is proposed for subspace composition and the performance is further improved in the united sub-space. Initial experiments on the SCARED dataset demonstrate that results at the first stage improves the performance from 10.2% to 4.1% for Sq Rel, Abs Rel, RMSE and RMSE log in the comparison with the state-of-the-art models.
Abstract:Gestures are pivotal in enhancing co-speech communication. While recent works have mostly focused on point-level motion transformation or fully supervised motion representations through data-driven approaches, we explore the representation of gestures in co-speech, with a focus on self-supervised representation and pixel-level motion deviation, utilizing a diffusion model which incorporates latent motion features. Our approach leverages self-supervised deviation in latent representation to facilitate hand gestures generation, which are crucial for generating realistic gesture videos. Results of our first experiment demonstrate that our method enhances the quality of generated videos, with an improvement from 2.7 to 4.5% for FGD, DIV, and FVD, and 8.1% for PSNR, 2.5% for SSIM over the current state-of-the-art methods.
Abstract:Large-scale text-to-speech (TTS) models have made significant progress recently.However, they still fall short in the generation of Chinese dialectal speech. Toaddress this, we propose Bailing-TTS, a family of large-scale TTS models capable of generating high-quality Chinese dialectal speech. Bailing-TTS serves as a foundation model for Chinese dialectal speech generation. First, continual semi-supervised learning is proposed to facilitate the alignment of text tokens and speech tokens. Second, the Chinese dialectal representation learning is developed using a specific transformer architecture and multi-stage training processes. With the proposed design of novel network architecture and corresponding strategy, Bailing-TTS is able to generate Chinese dialectal speech from text effectively and efficiently. Experiments demonstrate that Bailing-TTS generates Chinese dialectal speech towards human-like spontaneous representation. Readers are encouraged to listen to demos at \url{https://c9412600.github.io/bltts_tech_report/index.html}.
Abstract:In real life, the decoration of 3D indoor scenes through designing furniture layout provides a rich experience for people. In this paper, we explore the furniture layout task as a Markov decision process (MDP) in virtual reality, which is solved by hierarchical reinforcement learning (HRL). The goal is to produce a proper two-furniture layout in the virtual reality of the indoor scenes. In particular, we first design a simulation environment and introduce the HRL formulation for a two-furniture layout. We then apply a hierarchical actor-critic algorithm with curriculum learning to solve the MDP. We conduct our experiments on a large-scale real-world interior layout dataset that contains industrial designs from professional designers. Our numerical results demonstrate that the proposed model yields higher-quality layouts as compared with the state-of-art models.
Abstract:Recent years have witnessed great success for hand reconstruction in real-time applications such as visual reality and augmented reality while interacting with two-hand reconstruction through efficient transformers is left unexplored. In this paper, we propose a method called lightweight attention hand (LWA-HAND) to reconstruct hands in low flops from a single RGB image. To solve the occlusion and interaction problem in efficient attention architectures, we propose three mobile attention modules in this paper. The first module is a lightweight feature attention module that extracts both local occlusion representation and global image patch representation in a coarse-to-fine manner. The second module is a cross image and graph bridge module which fuses image context and hand vertex. The third module is a lightweight cross-attention mechanism that uses element-wise operation for the cross-attention of two hands in linear complexity. The resulting model achieves comparable performance on the InterHand2.6M benchmark in comparison with the state-of-the-art models. Simultaneously, it reduces the flops to $0.47GFlops$ while the state-of-the-art models have heavy computations between $10GFlops$ and $20GFlops$.
Abstract:In the industrial interior design process, professional designers plan the furniture layout to achieve a satisfactory 3D design for selling. In this paper, we explore the interior graphics scenes design task as a Markov decision process (MDP) in 3D simulation, which is solved by multi-agent reinforcement learning. The goal is to produce furniture layout in the 3D simulation of the indoor graphics scenes. In particular, we firstly transform the 3D interior graphic scenes into two 2D simulated scenes. We then design the simulated environment and apply two reinforcement learning agents to learn the optimal 3D layout for the MDP formulation in a cooperative way. We conduct our experiments on a large-scale real-world interior layout dataset that contains industrial designs from professional designers. Our numerical results demonstrate that the proposed model yields higher-quality layouts as compared with the state-of-art model. The developed simulator and codes are available at \url{https://github.com/CODE-SUBMIT/simulator2}.
Abstract:In the industrial interior design process, professional designers plan the size and position of furniture in a room to achieve a satisfactory design for selling. In this paper, we explore the interior scene design task as a Markov decision process (MDP), which is solved by deep reinforcement learning. The goal is to produce an accurate position and size of the furniture simultaneously for the indoor layout task. In particular, we first formulate the furniture layout task as a MDP problem by defining the state, action, and reward function. We then design the simulated environment and train reinforcement learning agents to produce the optimal layout for the MDP formulation. We conduct our experiments on a large-scale real-world interior layout dataset that contains industrial designs from professional designers. Our numerical results demonstrate that the proposed model yields higher-quality layouts as compared with the state-of-art model. The developed simulator and codes are available at \url{https://github.com/CODE-SUBMIT/simulator1}.